MCP Imagen Server
Enables text-to-image generation, style transfer, background removal, and automatic image cropping using Google's Imagen AI models through the Model Context Protocol.
README
MCP Imagen Server
An MCP (Model Context Protocol) server for Google Imagen API, enabling text-to-image generation using Google's state-of-the-art Imagen models.
Features
- Text-to-Image Generation: Generate high-quality images from text prompts using Imagen 4.0 models
- Style Transfer: Generate images following the style of a reference image using Imagen 3 Customization
- Background Removal: Remove backgrounds from images using rembg AI model
- Auto-Crop: Automatically crop images to remove transparent or empty borders with batch processing support
- Multiple Models: Support for three Imagen variants:
imagen-4.0-generate-001(default) - Standard quality and speedimagen-4.0-fast-generate-001- Faster generationimagen-4.0-ultra-generate-001- Highest quality (single image only)
- Flexible Configuration:
- Customizable aspect ratios (1:1, 3:4, 4:3, 9:16, 16:9)
- Batch generation (1-4 images per request)
- PNG output format with transparency support
- Authentication Options:
- Google Cloud Default Application Credentials
- Vertex AI or Gemini API
Prerequisites
- Python 3.11 or later
- uv for package management
- Google Cloud credentials (see Authentication)
Installation
1. Clone the Repository
git clone https://github.com/anton-proto/mcp-imagen.git
cd mcp-imagen/mcp-imagen-server
2. Install with uv
# Install dependencies
uv sync
# Or install in development mode
uv sync --all-extras
3. Set Up Authentication
Option A: Using Gemini API (Recommended for quick start)
- Get an API key from Google AI Studio
- Set the API key:
export GOOGLE_API_KEY="your-api-key-here"
Option B: Using Vertex AI (Recommended for production)
-
Install Google Cloud SDK:
# For Debian/Ubuntu curl https://sdk.cloud.google.com | bash exec -l $SHELL -
Authenticate with Google Cloud:
gcloud auth application-default login -
Set your project:
export GOOGLE_CLOUD_PROJECT="your-project-id" export USE_VERTEXAI="true" # Optional: specify location (default: us-central1) export GOOGLE_CLOUD_LOCATION="us-central1"
Usage
Running the Server
uv run mcp-imagen-server
The server will start and listen for MCP requests via stdio.
Integration with Claude Desktop
Add this configuration to your Claude Desktop config file:
Location:
- macOS:
~/Library/Application Support/Claude/claude_desktop_config.json - Windows:
%APPDATA%\Claude\claude_desktop_config.json - Linux:
~/.config/Claude/claude_desktop_config.json
Configuration:
{
"mcpServers": {
"imagen": {
"command": "uv",
"args": [
"--directory",
"/absolute/path/to/mcp-imagen-server",
"run",
"mcp-imagen-server"
],
"env": {
"GOOGLE_API_KEY": "your-api-key-here"
}
}
}
}
For Vertex AI:
{
"mcpServers": {
"imagen": {
"command": "uv",
"args": [
"--directory",
"/absolute/path/to/mcp-imagen-server",
"run",
"mcp-imagen-server"
],
"env": {
"USE_VERTEXAI": "true",
"GOOGLE_CLOUD_PROJECT": "your-project-id",
"GOOGLE_CLOUD_LOCATION": "us-central1"
}
}
}
}
Integration with Other MCP Clients
The server implements the standard MCP protocol and can be used with any MCP-compatible client.
MCP Tools
text-to-image
Generates images from text prompts using Google Imagen API.
Parameters
| Parameter | Type | Required | Default | Description |
|---|---|---|---|---|
prompt |
string | Yes | - | Text description of the image to generate |
output_dir |
string | Yes | - | Absolute path to directory where images should be saved |
model |
string | No | imagen-4.0-generate-001 |
Imagen model to use (see Models) |
sample_count |
integer | No | 1 | Number of images to generate (1-4, must be 1 for ultra model) |
aspect_ratio |
string | No | 1:1 |
Aspect ratio of generated images (1:1, 3:4, 4:3, 9:16, 16:9) |
Models
- imagen-4.0-generate-001: Standard model with balanced quality and speed
- imagen-4.0-fast-generate-001: Faster generation with good quality
- imagen-4.0-ultra-generate-001: Highest quality, single image only (sample_count must be 1)
Response
Returns a text response with paths to generated PNG files:
Successfully generated 2 image(s):
1. /path/to/output/A_serene_mountain_landscape_at_sunset_1.png
2. /path/to/output/A_serene_mountain_landscape_at_sunset_2.png
Example Usage
In Claude Desktop or other MCP client:
Generate an image of "A serene mountain landscape at sunset with a lake reflecting the sky" and save it to /tmp/images/
style-to-image
Generates images following the style of a reference image using Imagen 3 Customization.
Parameters
| Parameter | Type | Required | Description |
|---|---|---|---|
prompt |
string | Yes | Text description of the image content to generate |
style_image_path |
string | Yes | Absolute path to the style reference image file |
style_description |
string | Yes | Description of the style (e.g., "watercolor painting style", "neon sign style", "mosaic style") |
output_dir |
string | Yes | Absolute path to directory where images should be saved |
sample_count |
integer | No | Number of images to generate (1-4). Default: 1 |
Response
Returns a text response with paths to generated styled PNG files.
Example Usage
Generate an image of "A cat sitting on a windowsill" in the style of the image at /path/to/watercolor.png (watercolor painting style) and save it to /tmp/images/
remove-background
Removes the background from an image using the rembg AI model, producing a PNG with transparent background.
Parameters
| Parameter | Type | Required | Description |
|---|---|---|---|
input_path |
string | Yes | Absolute path to the input image file |
output_path |
string | No | Absolute path to save the output image. If not provided, will save with 'nobg_' prefix in same directory |
Response
Returns a text response with the path to the output image with transparent background:
Successfully removed background from image:
Output: /path/to/output/nobg_image.png
Example Usage
Remove the background from /home/user/images/photo.png
Or with custom output path:
Remove the background from /home/user/images/photo.png and save it to /home/user/outputs/transparent.png
autocrop
Automatically crop images to remove transparent or empty borders. Supports both single image and batch processing with parallel execution.
Parameters
| Parameter | Type | Required | Description |
|---|---|---|---|
input_paths |
array of strings | Yes | List of absolute paths to input image files to crop |
output_dir |
string | No | Absolute path to output directory. If not provided, cropped images will be saved in the same directory as input files with '_cropped' suffix |
padding |
integer | No | Number of pixels to add as padding around cropped content. Default: 0 |
overwrite |
boolean | No | Whether to overwrite existing output files. Default: True. If False and output file exists, the operation will fail with an error |
Response
Returns a text response with processing summary and paths to cropped images:
Processed 3 image(s):
Successfully cropped: 3
Cropped images:
1. /output/dir/image1_cropped.png
2. /output/dir/image2_cropped.png
3. /output/dir/image3_cropped.png
If any images fail to process, they will be listed separately:
Processed 3 image(s):
Successfully cropped: 2
Cropped images:
1. /output/dir/image1_cropped.png
2. /output/dir/image2_cropped.png
Failed: 1
- image3.png: Error: Image appears to be completely transparent or empty - cannot autocrop
Features
- Parallel Processing: Multiple images are processed concurrently for better performance
- Batch Support: Process multiple images in a single call
- Flexible Output: Save to a specific directory or use default location
- Padding Control: Add padding around cropped content if needed
- Transparency Aware: Automatically detects and crops around non-transparent pixels
Example Usage
Single image:
Autocrop the image at /home/user/images/logo.png
Multiple images with output directory:
Autocrop these images: ["/home/user/images/logo1.png", "/home/user/images/logo2.png", "/home/user/images/logo3.png"] and save to /home/user/cropped/
With padding:
Autocrop /home/user/images/logo.png with 10 pixels of padding and save to /home/user/output/
With overwrite disabled (prevent overwriting):
Autocrop /home/user/images/logo.png and save to /home/user/output/ with overwrite disabled
Note: By default, the tool will overwrite existing output files. Set overwrite=False to prevent accidental overwrites and raise an error if the output file already exists.
Development
Project Structure
mcp-imagen-server/
├── src/
│ └── mcp_imagen_server/
│ ├── __init__.py # Package initialization
│ ├── imagen_client.py # Imagen API client
│ └── server.py # MCP server implementation
├── pyproject.toml # Project configuration
├── README.md # This file
└── .python-version # Python version
Code Quality
The project uses ruff for linting and formatting:
# Check code
uv run ruff check src/
# Format code
uv run ruff format src/
# Auto-fix issues
uv run ruff check --fix src/
Running Tests
# Run tests (when implemented)
uv run pytest
Environment Variables
| Variable | Description | Required | Default |
|---|---|---|---|
GOOGLE_API_KEY |
Google AI API key for Gemini API | For Gemini API | - |
USE_VERTEXAI |
Set to "true" to use Vertex AI | No | false |
GOOGLE_CLOUD_PROJECT |
GCP project ID | For Vertex AI | - |
GOOGLE_CLOUD_LOCATION |
GCP region | No | us-central1 |
Troubleshooting
Authentication Issues
Problem: DefaultCredentialsError or authentication failures
Solution:
- For Gemini API: Ensure
GOOGLE_API_KEYis set - For Vertex AI: Run
gcloud auth application-default login - Verify your project has the Vertex AI API enabled
Permission Denied
Problem: Cannot write to output directory
Solution: Ensure the specified output_dir exists and is writable, or the server has permissions to create it
Model Not Available
Problem: Model not found or access denied
Solution:
- Verify your Google Cloud project has access to Imagen models
- Check that you're using a supported model name
- For ultra model, ensure
sample_count=1
License
MIT License - See LICENSE file for details
Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
References
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。