mcp-internet-speed-test
mcp-internet-speed-test
README
MCP Internet Speed Test
⚠️ Experimental Version
This is an experimental implementation of a Model Context Protocol (MCP) server for internet speed testing. It allows AI models and agents to measure, analyze, and report network performance metrics through a standardized interface.
What is MCP?
The Model Context Protocol (MCP) provides a standardized way for Large Language Models (LLMs) to interact with external tools and data sources. Think of it as the "USB-C for AI applications" - a common interface that allows AI systems to access real-world capabilities and information.
Features
- Download Speed Testing: Measure download bandwidth
- Upload Speed Testing: Measure upload bandwidth with configurable file sizes
- Latency Testing: Measure network latency to various servers
- Jitter Analysis: Calculate network jitter by analyzing latency variations
- Comprehensive Reporting: Provide detailed JSON-formatted reports
Installation
Prerequisites
- Python 3.12 or higher
- uv package manager (recommended)
Option 1: Using uvx (Recommended)
The uvx command is a convenient way to run Python packages directly without explicit installation:
# Run the MCP server directly
uvx /path/to/mcp-internet-speed-test
Option 2: Using docker
# Build the Docker image
docker build -t mcp-internet-speed-test .
# Run the MCP server in a Docker container
docker run -it --rm -v $(pwd):/app -w /app mcp-internet-speed-test
Configuration
To use this MCP server with Claude Desktop or other MCP clients, add it to your MCP configuration file.
Claude Desktop Configuration
Edit your Claude Desktop MCP configuration file:
{
"mcpServers": {
"mcp-internet-speed-test": {
"command": "uvx",
"args": [
"/ABSOLUTE/PATH/TO/mcp-internet-speed-test"
]
}
}
}
API Tools
The MCP Internet Speed Test provides the following tools:
measure_download_speed: Measures download bandwidth (in Mbps)measure_upload_speed: Measures upload bandwidth (in Mbps)measure_latency: Measures network latency (in ms)measure_jitter: Measures network jitter by analyzing latency variationsrun_complete_test: Runs all tests and provides a comprehensive report
Troubleshooting
If you're having issues connecting to the MCP server:
- Make sure the path in your MCP configuration is correct
- Check that you have the required permissions for the directory
- Verify Python 3.12+ is installed and in your PATH
- Ensure the
mcp[cli]andrequestspackages are installed
Development
This is an experimental project and contributions are welcome. To contribute:
- Open an issue or submit a pull request
License
This project is licensed under the MIT License - see the LICENSE file for details.
Acknowledgments
- MCP Framework maintainers for standardizing AI tool interactions
- The Model Context Protocol community for documentation and examples
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。