MCP Kali Pentest
AI-powered autonomous penetration testing framework with 80+ professional security tools across reconnaissance, web application testing, exploitation, and forensics. Integrates with LM Studio for intelligent vulnerability assessment and automated security testing workflows.
README
MCP Kali Pentest - Autonomous Penetration Testing Framework
A comprehensive, AI-powered automated penetration testing framework integrated with LM Studio for autonomous decision-making. This MCP server provides 80+ professional-grade security testing tools with intelligent automation across 17 specialized categories.
Features
🎯 Autonomous Testing
- AI-powered decision making using LM Studio
- Automatic target reconnaissance
- Intelligent vulnerability prioritization
- Self-guided exploitation path selection
- Continuous learning from findings
🛠️ Comprehensive Tool Suite (80+ Tools)
📡 Reconnaissance & OSINT (11 tools)
- Nmap, Masscan - Port scanning
- Amass, theHarvester - Subdomain enumeration
- Recon-ng - OSINT framework
- Shodan - IoT device search
- WhatWeb, Wafw00f - Technology fingerprinting
🌐 Web Application Testing (17 tools)
- Nikto, Nuclei, WPScan, Joomscan, Droopescan
- Burp Suite Pro API, OWASP ZAP
- SQLMap, Commix, XSStrike - Exploitation
- Gobuster, Dirb, DirBuster, Wfuzz, FFUF
📻 Wireless Security (5 tools)
- Aircrack-ng suite, Wifite, Reaver
- Bettercap, Kismet
🔓 Brute Force & Authentication (6 tools)
- Hydra, CrackMapExec, Medusa, Patator
🔐 Password Cracking (4 tools)
- John the Ripper, Hashcat, Ophcrack
💥 Exploitation (5 tools)
- Metasploit Framework, SearchSploit
👻 Post-Exploitation (6 tools)
- Mimikatz, BloodHound, PowerShell Empire
- LinPEAS, WinPEAS, CrackMapExec
🎣 Social Engineering (3 tools)
- SET, GoPhish, King Phisher
📱 Mobile Security (4 tools)
- MobSF, Drozer, Frida
🔌 API Testing (4 tools)
- Postman/Newman, GraphQL Scanner
🔍 Digital Forensics (4 tools)
- Volatility, Autopsy, Binwalk
🔬 Reverse Engineering (5 tools)
- Ghidra, Radare2, IDA Pro
☁️ Cloud Security (5 tools)
- Scout Suite, CloudFox, Pacu
🐳 Container Security (4 tools)
- Trivy, Docker Bench Security
🌐 Network Analysis (6 tools)
- tcpdump, Wireshark, SNMP, enum4linux
🤖 Autonomous Testing (4 tools)
- AI-powered pentesting, Smart suggestions
🤖 AI-Powered Features
- Automatic scan result analysis
- Intelligent next-step suggestions
- Vulnerability prioritization
- Risk assessment
- Executive report generation
- Custom attack plan creation
📊 Professional Reporting
- JSON, HTML, Markdown, and PDF formats
- Executive summaries
- Risk assessments
- Remediation recommendations
- OWASP mapping
- Timeline visualization
Prerequisites
System Requirements
- Kali Linux (recommended) or any Debian-based Linux with security tools
- Python 3.9 or higher
- LM Studio (or compatible OpenAI API endpoint)
- Minimum 4GB RAM
- 20GB free disk space
Required Tools
Most tools come pre-installed on Kali Linux:
# Verify tools are installed
which nmap nikto sqlmap metasploit gobuster nuclei hydra john hashcat
# Install missing tools
sudo apt update
sudo apt install -y nmap nikto sqlmap metasploit-framework gobuster \
hydra john hashcat sslscan enum4linux smbclient snmp \
tcpdump wireshark-cli wpscan nuclei ffuf
Installation
1. Clone the Repository
git clone https://github.com/yourusername/mcpkali.git
cd mcpkali
2. Create Virtual Environment
python3 -m venv venv
source venv/bin/activate
3. Install Dependencies
pip install -r requirements.txt
4. Set Up LM Studio
- Download and install LM Studio
- Load a model (recommended: Mistral 7B, Llama 2, or similar)
- Start the local server (Server tab → Start Server)
- Verify it's running at
http://localhost:1234
5. Configure the Server
# Copy example config
cp config.json config.local.json
# Edit configuration
nano config.local.json
Update the LM Studio settings:
{
"lm_studio": {
"base_url": "http://localhost:1234/v1",
"model": "your-model-name"
}
}
6. Create Required Directories
sudo mkdir -p /var/log/mcpkali
sudo mkdir -p /var/lib/mcpkali/{reports,sessions}
sudo chown -R $USER:$USER /var/log/mcpkali /var/lib/mcpkali
Usage
Start the MCP Server
python3 server.py
Basic Examples
1. Autonomous Pentest
{
"tool": "start_autonomous_pentest",
"arguments": {
"target": "192.168.1.100",
"scope": ["192.168.1.100", "192.168.1.101"],
"depth": "vulnerability_scan",
"rules_of_engagement": {
"allow_exploitation": false,
"rate_limit": true
}
}
}
2. Network Reconnaissance
{
"tool": "nmap_scan",
"arguments": {
"target": "example.com",
"scan_type": "full",
"scripts": ["vuln", "default"]
}
}
3. Web Application Scanning
{
"tool": "vulnerability_assessment",
"arguments": {
"target": "https://example.com",
"assessment_type": "web"
}
}
4. Get AI Suggestions
{
"tool": "get_ai_suggestion",
"arguments": {
"session_id": "pentest_20241105_120000",
"context": "Found open ports 80, 443, 22. What should I do next?"
}
}
5. Generate Report
{
"tool": "generate_report",
"arguments": {
"session_id": "pentest_20241105_120000",
"format": "html"
}
}
MCP Integration
Claude Desktop
Add to your claude_desktop_config.json:
{
"mcpServers": {
"kali-pentest": {
"command": "python3",
"args": ["/path/to/mcpkali/server.py"],
"env": {
"PYTHONPATH": "/path/to/mcpkali"
}
}
}
}
Other MCP Clients
Use standard MCP protocol to connect:
from mcp import ClientSession
from mcp.client.stdio import stdio_client
async with stdio_client(["python3", "server.py"]) as (read, write):
async with ClientSession(read, write) as session:
await session.initialize()
# Use the tools
Configuration
Security Settings
Important: Configure appropriate security settings in config.json:
{
"pentest": {
"rules_of_engagement": {
"allow_exploitation": false, // Only enable with proper authorization
"allow_post_exploitation": false,
"max_brute_force_attempts": 100,
"rate_limit": true
}
}
}
LM Studio Settings
{
"lm_studio": {
"temperature": 0.7, // Higher = more creative, Lower = more focused
"max_tokens": 2000, // Maximum response length
"timeout": 120 // Request timeout in seconds
}
}
Tool Configuration
Enable/disable specific tools:
{
"tools": {
"nmap": { "enabled": true },
"sqlmap": { "enabled": true },
"hydra": { "enabled": false } // Disable if not needed
}
}
Autonomous Mode
The autonomous mode allows the AI to make decisions and run tests automatically:
Phases
-
Reconnaissance
- Port scanning
- Service detection
- OS fingerprinting
- DNS enumeration
- Web technology detection
-
Vulnerability Identification
- Service-specific vulnerability scans
- Web application testing
- SSL/TLS analysis
- Known exploit searches
- CVE matching
-
Exploitation (if authorized)
- Safe exploitation attempts
- Proof-of-concept generation
- Risk assessment
-
Post-Exploitation (if authorized)
- Privilege escalation
- Lateral movement analysis
- Data exfiltration testing
Depth Levels
reconnaissance- Information gathering onlyvulnerability_scan- Find vulnerabilities (recommended)exploitation- Attempt safe exploits (requires authorization)post_exploitation- Full pentest (requires explicit authorization)
API Reference
Tools
See API.md for complete tool documentation.
Resources
pentest://session/{session_id}- Get session datapentest://report/{report_id}- Get report
Safety and Legal Considerations
⚠️ Important Warnings
- Authorization Required: Only test systems you own or have explicit written permission to test
- Rules of Engagement: Always define clear RoE before testing
- Responsible Disclosure: Report vulnerabilities responsibly
- Data Protection: Handle discovered data carefully
- Legal Compliance: Ensure compliance with local laws
Recommended Practices
- Start with reconnaissance-only mode
- Use VPN/isolated network for testing
- Keep detailed logs
- Review AI suggestions before execution
- Implement rate limiting
- Test in non-production environments first
Troubleshooting
LM Studio Connection Issues
# Check if LM Studio is running
curl http://localhost:1234/v1/models
# Check server logs
tail -f /var/log/mcpkali/server.log
Permission Issues
# Ensure tools have proper permissions
sudo chmod +x $(which nmap sqlmap metasploit)
# Some tools require root
sudo setcap cap_net_raw,cap_net_admin,cap_net_bind_service+eip $(which nmap)
Tool Not Found
# Install missing tool
sudo apt install -y <tool-name>
# Update tool database
sudo updatedb
Development
Adding New Tools
- Add tool function to
tools.py - Register tool in
server.pyhandle_list_tools() - Add route in
handle_call_tool() - Update documentation
Contributing
Contributions welcome! Please:
- Fork the repository
- Create a feature branch
- Add tests for new features
- Submit a pull request
Architecture
┌─────────────────────────────────────────────┐
│ MCP Client (Claude, etc.) │
└─────────────────┬───────────────────────────┘
│ MCP Protocol
┌─────────────────▼───────────────────────────┐
│ server.py (MCP Server) │
│ ┌─────────────────────────────────────┐ │
│ │ Tool Registry & Request Handler │ │
│ └─────────────────────────────────────┘ │
└─────┬──────────────────┬───────────────┬────┘
│ │ │
┌─────▼─────┐ ┌───────▼──────┐ ┌────▼─────┐
│LM Studio │ │Pentest Engine│ │ Tools │
│ Client │ │ (Reports) │ │ (Kali) │
└───────────┘ └──────────────┘ └───────────┘
│ │
┌─────▼─────┐ ┌──────▼──────┐
│LM Studio │ │ Kali Tools │
│ API │ │nmap, sqlmap,│
│(localhost)│ │nikto, etc. │
└───────────┘ └─────────────┘
Performance
- Concurrent scan limit: 3 (configurable)
- Average scan time: 5-30 minutes depending on depth
- Memory usage: 500MB-2GB depending on tools
- LM Studio inference: 2-10 seconds per decision
Roadmap
- [ ] Metasploit RPC integration
- [ ] Custom module support
- [ ] Web UI dashboard
- [ ] Distributed scanning
- [ ] Cloud integration (AWS, Azure, GCP)
- [ ] Container security scanning
- [ ] API security testing
- [ ] Mobile app testing
- [ ] Plugin system
- [ ] Real-time collaboration
License
MIT License - See LICENSE file
Disclaimer
This tool is for authorized security testing only. Misuse of this tool may violate laws. The authors assume no liability for illegal use.
Credits
Built with:
- MCP (Model Context Protocol)
- LM Studio
- Kali Linux Tools
- Python asyncio
Support
- Issues: GitHub Issues
- Discussions: GitHub Discussions
- Email: security@example.com
Acknowledgments
Thanks to the security community and open-source tool developers who make projects like this possible.
Remember: With great power comes great responsibility. Use ethically and legally.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。