MCP Knowledge Vault Search Tool
Enables searching personal knowledge vaults using hybrid semantic and keyword matching through the Fondu Knowledge Vault API. Retrieves and reranks relevant information from personal knowledge bases with flexible authentication options.
README
MCP Knowledge Vault Search Tool
This tool provides an MCP (Model Context Protocol) server that allows you to search your personal knowledge vault using hybrid semantic and keyword matching. The server connects to the Fondu Knowledge Vault API to retrieve relevant information from your personal knowledge base.
Features
- Hybrid Search: Combines semantic vector search with keyword matching
- Reranking: Uses reranking models to prioritize the most relevant results
- Flexible Authentication: Multiple authentication methods with priority-based resolution
- Production Ready: Comprehensive error handling and logging
- MCP Compatible: Works with Claude Desktop and other MCP clients
- SSE Transport: Server-Sent Events for real-time communication
Prerequisites
- Python 3.8+
- Access to Fondu Knowledge Vault API
- Valid authentication token
Installation
- Clone this repository:
git clone <repository-url>
cd mcp_tools
- Set up virtual environment and install dependencies:
python3 -m venv .venv
source .venv/bin/activate
pip install -r requirements.txt
Authentication Setup
The server supports multiple authentication methods with the following priority order:
1. Explicit Parameter (Highest Priority)
Pass the token directly when calling the tool.
2. Environment Variables
Set one of these environment variables:
export FONDU_AUTH_TOKEN="your-token-here"
# or
export FONDU_API_TOKEN="your-token-here"
3. Configuration Files
Create a config file at one of these locations:
~/.fondu/config.yaml(recommended)~/.config/fondu/config.yamlconfig.yaml(in project directory)
Example config file:
fondu:
auth_token: "your-token-here"
base_url: "https://api.youfondu.com"
server:
host: "127.0.0.1"
port: 8080
debug: true
4. Token Files
Save your token in one of these files:
~/.fondu/token~/.config/fondu/token.fondu_token
Starting the MCP Server
Method 1: Direct Python (Recommended)
source .venv/bin/activate
python mcp_fondu_search_user_context/server.py --host 127.0.0.1 --port 8080
Method 2: Using the run script
./run.sh
The server will start on http://127.0.0.1:8080 with the following endpoints:
/- Homepage/health- Health check/sse- Server-Sent Events endpoint for MCP/messages/- Message handling endpoint
Claude Desktop Configuration
To use with Claude Desktop, add this to your ~/Library/Application Support/Claude/claude_desktop_config.json:
{
"mcpServers": {
"knowledge_vault": {
"command": "python",
"args": ["/absolute/path/to/mcp_tools/mcp_fondu_search_user_context/server.py"],
"env": {
"FONDU_AUTH_TOKEN": "your-auth-token-here"
}
}
}
}
Alternative using the run script:
{
"mcpServers": {
"knowledge_vault": {
"command": "/absolute/path/to/mcp_tools/run.sh",
"env": {
"FONDU_AUTH_TOKEN": "your-auth-token-here"
}
}
}
}
Available Tools
gather_relevant_user_knowledge
Search your knowledge vault using hybrid semantic and keyword matching.
Parameters:
query(string, required): Natural language query for semantic search and rerankingauth_token(string, optional): Authentication token (if not set via env/config)keywords(string, optional): Specific terms to prioritize in keyword matchingtop_k(integer, optional): Number of results to return (default: 10)
Returns: A formatted string containing the most relevant results from your knowledge vault, including source information and metadata when available.
Example Response:
Found 3 relevant results in your knowledge vault:
1. Quantum computing uses quantum mechanical phenomena like superposition and entanglement to perform calculations...
Source: quantum_computing_notes.md
Metadata: {'tags': ['physics', 'computing'], 'date': '2024-01-15'}
2. The fundamental principle behind quantum algorithms is the ability to exist in multiple states simultaneously...
Source: research_papers/quantum_algorithms.pdf
Metadata: {'author': 'Dr. Smith', 'year': 2023}
Testing
Server Health Test
curl http://127.0.0.1:8080/health
Tool Functionality Test
Create a test script to verify the tool works:
import asyncio
import sys
sys.path.append('mcp_fondu_search_user_context')
from server import gather_relevant_user_knowledge
async def test_tool():
result = await gather_relevant_user_knowledge(
query="machine learning algorithms",
auth_token="your-token-here",
top_k=5
)
print(result)
asyncio.run(test_tool())
Configuration Examples
Example configuration files are provided:
config.yaml.example- Server configuration templateclaude_desktop_config.json.example- Claude Desktop setup template
Copy these files and customize with your settings:
cp config.yaml.example ~/.fondu/config.yaml
# Edit with your auth token and preferences
Error Handling and Logging
The server provides comprehensive error handling:
- Missing Auth Token: Clear error message with setup instructions
- API Errors: Graceful handling of network issues and API failures
- Invalid Tokens: Proper 403 error handling
- Debug Logging: Detailed logs for troubleshooting
Logs are written to:
- Standard error output (visible when running the server)
/tmp/error_log.txt(fallback error logging)
API Configuration
The server connects to:
- Production API:
https://api.youfondu.com/v1/knowledge/search_knowledge_vault - Protocol: HTTPS with Bearer token authentication
- Timeout: 30 seconds for API requests
- Format: JSON request/response
Troubleshooting
Common Issues
-
Authentication Errors
- Verify your token is valid and not expired
- Check token is properly set via environment variable or config file
- Ensure no extra whitespace in token files
-
Connection Issues
- Verify internet connectivity
- Check if API endpoint is accessible:
curl -I https://api.youfondu.com - Ensure no firewall blocking outbound HTTPS
-
MCP Client Issues
- Restart Claude Desktop after configuration changes
- Check that absolute paths are used in configuration
- Verify Python virtual environment is properly activated
-
Server Startup Issues
- Ensure all dependencies are installed:
pip install -r requirements.txt - Check port 8080 is not already in use
- Verify Python 3.8+ is being used
- Ensure all dependencies are installed:
Debug Mode
To enable debug logging, set the environment variable:
export PYTHONPATH=/path/to/mcp_tools
export DEBUG=1
python mcp_fondu_search_user_context/server.py
Testing Authentication Methods
You can test different authentication methods:
# Test with environment variable
export FONDU_AUTH_TOKEN="your-token"
python test_auth.py
# Test with config file
echo "fondu:\n auth_token: your-token" > ~/.fondu/config.yaml
python test_auth.py
# Test with token file
echo "your-token" > ~/.fondu/token
python test_auth.py
Development
To contribute or modify the server:
-
Setup Development Environment
python3 -m venv .venv source .venv/bin/activate pip install -r requirements.txt -
Run Tests
python test_mcp_server.py python test_tool_functionality.py -
Code Structure
mcp_fondu_search_user_context/server.py- Main server implementationrequirements.txt- Python dependenciesrun.sh- Convenience script for starting serverconfig.yaml.example- Configuration templateclaude_desktop_config.json.example- Claude Desktop setup template
Dependencies
Core dependencies:
fastapi>=0.109.2- Web frameworkuvicorn>=0.27.1- ASGI serverhttpx>=0.26.0- HTTP clientmcp>=1.3.0- Model Context ProtocolPyYAML>=6.0- YAML configuration support
See requirements.txt for complete dependency list.
Deployment
AWS App Runner
This server is ready for deployment to AWS App Runner. See DEPLOYMENT.md for detailed deployment instructions.
Quick Deploy:
- Push code to your Git repository
- Create App Runner service pointing to your repository
- Set
FONDU_AUTH_TOKENenvironment variable - Deploy!
The server includes:
- ✅ App Runner configuration (
apprunner.yaml) - ✅ Docker support (
Dockerfile) - ✅ Health check endpoint (
/health) - ✅ Environment variable configuration
- ✅ Production-ready logging
- ✅ Auto-scaling support
Other Cloud Platforms
The server can be deployed to any platform that supports:
- Python 3.8+
- Environment variables
- HTTP/HTTPS traffic on port 8080
Tested platforms:
- AWS App Runner ✅
- Docker containers ✅
- Traditional VPS hosting ✅
License
[Add your license information here]
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。