MCP Learning Project
A comprehensive learning platform for Model Context Protocol development that teaches MCP concepts through hands-on modules including text processing, file operations, and database integration. Designed as an educational tool with progressive difficulty levels from basic to advanced MCP server development.
README
MCP Learning Project
A comprehensive learning platform for Model Context Protocol (MCP) development. This project is designed to help you learn MCP development from basics to advanced concepts through hands-on experience.
🚀 Quick Start
Prerequisites
- Python 3.8 or higher
- Git
- VS Code or Cursor (recommended)
Installation
-
Clone the repository (if using Git):
git clone <your-repo-url> cd mcp-learning-project -
Install dependencies:
pip install -r requirements.txt -
Set up environment:
cp .env.example .env # Edit .env with your configuration -
Run the basic server:
python src/main.py
📚 Learning Path
Phase 1: Foundation (Start Here!)
- [x] Basic MCP Server - Learn fundamental MCP concepts
- [x] Text Processing Module - Handle text manipulation tasks
- [x] File Operations Module - Work with files and directories
Phase 2: Intermediate
- [ ] Database Integration - Connect with databases
- [ ] API Integration - Work with external APIs
- [ ] Configuration Management - Handle app settings
Phase 3: Advanced
- [ ] Machine Learning - Integrate ML models
- [ ] Web Interface - Create web-based tools
- [ ] Monitoring & Analytics - Track performance
🏗️ Project Structure
mcp-learning-project/
├── src/ # Source code
│ ├── core/ # Core MCP server
│ ├── modules/ # Individual modules
│ ├── shared/ # Shared utilities
│ └── web/ # Web interface
├── tests/ # Test files
├── docs/ # Generated documentation
├── config/ # Configuration files
├── scripts/ # Utility scripts
├── examples/ # Example usage
└── project-docs/ # Project documentation
🛠️ Available Modules
Text Processing Module
- Word Count: Count words in text
- Text Summarization: Create summaries
- Language Detection: Detect text language
- Sentiment Analysis: Analyze text sentiment
File Operations Module
- File Reading: Read file contents
- File Writing: Write data to files
- Directory Operations: List, create, delete directories
- File Format Conversion: Convert between formats
🧪 Testing
Run tests to ensure everything works:
python -m pytest tests/
📖 Documentation
🎯 Your First Steps
- Explore the code: Look at
src/modules/text_processing/to see how modules work - Run examples: Try the examples in the
examples/folder - Add your own module: Follow the template in
src/modules/base/ - Test your changes: Use the testing framework
🤝 Contributing
This is a learning project! Feel free to:
- Add new modules
- Improve existing code
- Fix bugs
- Add documentation
- Share your learning experiences
📝 License
This project is for educational purposes. Feel free to use and modify as needed.
🆘 Getting Help
- Check the documentation
- Look at the examples
- Review the test files for usage examples
Happy Learning! 🎉
Start with the basic modules and gradually add more complex features as you learn. Each module is designed to teach you different aspects of MCP development.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。