MCP LLMS-TXT Documentation Server

MCP LLMS-TXT Documentation Server

Provides controlled access to llms.txt documentation files through MCP tools, allowing AI assistants to fetch and read documentation from user-approved domains with full audit visibility of tool calls and context retrieval.

Category
访问服务器

README

MCP LLMS-TXT Documentation Server

Overview

llms.txt is a website index for LLMs, providing background information, guidance, and links to detailed markdown files. IDEs like Cursor and Windsurf or apps like Claude Code/Desktop can use llms.txt to retrieve context for tasks. However, these apps use different built-in tools to read and process files like llms.txt. The retrieval process can be opaque, and there is not always a way to audit the tool calls or the context returned.

MCP offers a way for developers to have full control over tools used by these applications. Here, we create an open source MCP server to provide MCP host applications (e.g., Cursor, Windsurf, Claude Code/Desktop) with (1) a user-defined list of llms.txt files and (2) a simple fetch_docs tool read URLs within any of the provided llms.txt files. This allows the user to audit each tool call as well as the context returned.

<img src="https://github.com/user-attachments/assets/736f8f55-833d-4200-b833-5fca01a09e1b" width="60%">

llms-txt

You can find llms.txt files for langgraph and langchain here:

Library llms.txt
LangGraph Python https://langchain-ai.github.io/langgraph/llms.txt
LangGraph JS https://langchain-ai.github.io/langgraphjs/llms.txt
LangChain Python https://python.langchain.com/llms.txt
LangChain JS https://js.langchain.com/llms.txt

Quickstart

Install uv

curl -LsSf https://astral.sh/uv/install.sh | sh

Choose an llms.txt file to use.

  • For example, here's the LangGraph llms.txt file.

Note: Security and Domain Access Control

For security reasons, mcpdoc implements strict domain access controls:

  1. Remote llms.txt files: When you specify a remote llms.txt URL (e.g., https://langchain-ai.github.io/langgraph/llms.txt), mcpdoc automatically adds only that specific domain (langchain-ai.github.io) to the allowed domains list. This means the tool can only fetch documentation from URLs on that domain.

  2. Local llms.txt files: When using a local file, NO domains are automatically added to the allowed list. You MUST explicitly specify which domains to allow using the --allowed-domains parameter.

  3. Adding additional domains: To allow fetching from domains beyond those automatically included:

    • Use --allowed-domains domain1.com domain2.com to add specific domains
    • Use --allowed-domains '*' to allow all domains (use with caution)

This security measure prevents unauthorized access to domains not explicitly approved by the user, ensuring that documentation can only be retrieved from trusted sources.

(Optional) Test the MCP server locally with your llms.txt file(s) of choice:

uvx --from mcpdoc mcpdoc \
    --urls "LangGraph:https://langchain-ai.github.io/langgraph/llms.txt" "LangChain:https://python.langchain.com/llms.txt" \
    --transport sse \
    --port 8082 \
    --host localhost
  • This should run at: http://localhost:8082

Screenshot 2025-03-18 at 3 29 30 PM

npx @modelcontextprotocol/inspector

Screenshot 2025-03-18 at 3 30 30 PM

  • Here, you can test the tool calls.

Connect to Cursor

  • Open Cursor Settings and MCP tab.
  • This will open the ~/.cursor/mcp.json file.

Screenshot 2025-03-19 at 11 01 31 AM

  • Paste the following into the file (we use the langgraph-docs-mcp name and link to the LangGraph llms.txt).
{
  "mcpServers": {
    "langgraph-docs-mcp": {
      "command": "uvx",
      "args": [
        "--from",
        "mcpdoc",
        "mcpdoc",
        "--urls",
        "LangGraph:https://langchain-ai.github.io/langgraph/llms.txt LangChain:https://python.langchain.com/llms.txt",
        "--transport",
        "stdio"
      ]
    }
  }
}
  • Confirm that the server is running in your Cursor Settings/MCP tab.
  • Best practice is to then update Cursor Global (User) rules.
  • Open Cursor Settings/Rules and update User Rules with the following (or similar):
for ANY question about LangGraph, use the langgraph-docs-mcp server to help answer -- 
+ call list_doc_sources tool to get the available llms.txt file
+ call fetch_docs tool to read it
+ reflect on the urls in llms.txt 
+ reflect on the input question 
+ call fetch_docs on any urls relevant to the question
+ use this to answer the question
  • CMD+L (on Mac) to open chat.
  • Ensure agent is selected.

Screenshot 2025-03-18 at 1 56 54 PM

Then, try an example prompt, such as:

what are types of memory in LangGraph?

Screenshot 2025-03-18 at 1 58 38 PM

Connect to Windsurf

  • Open Cascade with CMD+L (on Mac).
  • Click Configure MCP to open the config file, ~/.codeium/windsurf/mcp_config.json.
  • Update with langgraph-docs-mcp as noted above.

Screenshot 2025-03-19 at 11 02 52 AM

  • Update Windsurf Rules/Global rules with the following (or similar):
for ANY question about LangGraph, use the langgraph-docs-mcp server to help answer -- 
+ call list_doc_sources tool to get the available llms.txt file
+ call fetch_docs tool to read it
+ reflect on the urls in llms.txt 
+ reflect on the input question 
+ call fetch_docs on any urls relevant to the question

Screenshot 2025-03-18 at 2 02 12 PM

Then, try the example prompt:

  • It will perform your tool calls.

Screenshot 2025-03-18 at 2 03 07 PM

Connect to Claude Desktop

  • Open Settings/Developer to update ~/Library/Application\ Support/Claude/claude_desktop_config.json.
  • Update with langgraph-docs-mcp as noted above.
  • Restart Claude Desktop app.

[!Note] If you run into issues with Python version incompatibility when trying to add MCPDoc tools to Claude Desktop, you can explicitly specify the filepath to python executable in the uvx command.

<details> <summary>Example configuration</summary>

{
  "mcpServers": {
    "langgraph-docs-mcp": {
      "command": "uvx",
      "args": [
        "--python",
        "/path/to/python",
        "--from",
        "mcpdoc",
        "mcpdoc",
        "--urls",
        "LangGraph:https://langchain-ai.github.io/langgraph/llms.txt",
        "--transport",
        "stdio"
      ]
    }
  }
}

</details>

[!Note] Currently (3/21/25) it appears that Claude Desktop does not support rules for global rules, so appending the following to your prompt.

<rules>
for ANY question about LangGraph, use the langgraph-docs-mcp server to help answer -- 
+ call list_doc_sources tool to get the available llms.txt file
+ call fetch_docs tool to read it
+ reflect on the urls in llms.txt 
+ reflect on the input question 
+ call fetch_docs on any urls relevant to the question
</rules>

Screenshot 2025-03-18 at 2 05 54 PM

  • You will see your tools visible in the bottom right of your chat input.

Screenshot 2025-03-18 at 2 05 39 PM

Then, try the example prompt:

  • It will ask to approve tool calls as it processes your request.

Screenshot 2025-03-18 at 2 06 54 PM

Connect to Claude Code

  • In a terminal after installing Claude Code, run this command to add the MCP server to your project:
claude mcp add-json langgraph-docs '{"type":"stdio","command":"uvx" ,"args":["--from", "mcpdoc", "mcpdoc", "--urls", "langgraph:https://langchain-ai.github.io/langgraph/llms.txt", "LangChain:https://python.langchain.com/llms.txt"]}' -s local
  • You will see ~/.claude.json updated.
  • Test by launching Claude Code and running to view your tools:
$ Claude
$ /mcp 

Screenshot 2025-03-18 at 2 13 49 PM

[!Note] Currently (3/21/25) it appears that Claude Code does not support rules for global rules, so appending the following to your prompt.

<rules>
for ANY question about LangGraph, use the langgraph-docs-mcp server to help answer -- 
+ call list_doc_sources tool to get the available llms.txt file
+ call fetch_docs tool to read it
+ reflect on the urls in llms.txt 
+ reflect on the input question 
+ call fetch_docs on any urls relevant to the question
</rules>

Then, try the example prompt:

  • It will ask to approve tool calls.

Screenshot 2025-03-18 at 2 14 37 PM

Command-line Interface

The mcpdoc command provides a simple CLI for launching the documentation server.

You can specify documentation sources in three ways, and these can be combined:

  1. Using a YAML config file:
  • This will load the LangGraph Python documentation from the sample_config.yaml file in this repo.
mcpdoc --yaml sample_config.yaml
  1. Using a JSON config file:
  • This will load the LangGraph Python documentation from the sample_config.json file in this repo.
mcpdoc --json sample_config.json
  1. Directly specifying llms.txt URLs with optional names:
  • URLs can be specified either as plain URLs or with optional names using the format name:url.
  • You can specify multiple URLs by using the --urls parameter multiple times.
  • This is how we loaded llms.txt for the MCP server above.
mcpdoc --urls LangGraph:https://langchain-ai.github.io/langgraph/llms.txt --urls LangChain:https://python.langchain.com/llms.txt

You can also combine these methods to merge documentation sources:

mcpdoc --yaml sample_config.yaml --json sample_config.json --urls LangGraph:https://langchain-ai.github.io/langgraph/llms.txt --urls LangChain:https://python.langchain.com/llms.txt

Additional Options

  • --follow-redirects: Follow HTTP redirects (defaults to False)
  • --timeout SECONDS: HTTP request timeout in seconds (defaults to 10.0)

Example with additional options:

mcpdoc --yaml sample_config.yaml --follow-redirects --timeout 15

This will load the LangGraph Python documentation with a 15-second timeout and follow any HTTP redirects if necessary.

Configuration Format

Both YAML and JSON configuration files should contain a list of documentation sources.

Each source must include an llms_txt URL and can optionally include a name:

YAML Configuration Example (sample_config.yaml)

# Sample configuration for mcp-mcpdoc server
# Each entry must have a llms_txt URL and optionally a name
- name: LangGraph Python
  llms_txt: https://langchain-ai.github.io/langgraph/llms.txt

JSON Configuration Example (sample_config.json)

[
  {
    "name": "LangGraph Python",
    "llms_txt": "https://langchain-ai.github.io/langgraph/llms.txt"
  }
]

Programmatic Usage

from mcpdoc.main import create_server

# Create a server with documentation sources
server = create_server(
    [
        {
            "name": "LangGraph Python",
            "llms_txt": "https://langchain-ai.github.io/langgraph/llms.txt",
        },
        # You can add multiple documentation sources
        # {
        #     "name": "Another Documentation",
        #     "llms_txt": "https://example.com/llms.txt",
        # },
    ],
    follow_redirects=True,
    timeout=15.0,
)

# Run the server
server.run(transport="stdio")

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选