MCP Logger
A personal fitness tracking server that enables logging and querying workouts, nutrition, and body metrics through a local SQLite database. Integrates with OpenNutrition MCP for food logging and supports exercise history tracking for workout progression.
README
MCP Logger
A Python/uv + FastMCP server for logging workouts, nutrition, and body metrics. Single-user local SQLite database with stdio MCP interface.
- this was entirely vibe coded
Features
- Workouts: Flexible
workout -> exercises[] -> sets[]structure with tags, notes, RPE/RIR, distances, unilateral sides, etc. - Nutrition: Cronometer/MyFitnessPal-style logging with meals and OpenNutrition-backed food snapshots.
- Body Metrics: Weight and customizable skinfold tracking.
- Search: Cross-domain search across all data.
Tools
Workout Tools
log_workout- Log a complete workout with exercises and setsget_workouts- Query workouts with filters (date range, type, tag)get_last_workout- Get most recent workout by type or tagget_exercise_history- Get history for a specific exercise
Nutrition Tools
upsert_nutrition_day- Create/update a nutrition dayupsert_meal- Create/update a meal within a dayadd_or_update_meal_item- Add/update food item (use with OpenNutrition MCP)get_nutrition_day- Get complete day with meals, items, and totalsget_nutrition_days_summary- Get summaries for a date rangedelete_meal_item,delete_meal,delete_nutrition_day- Delete operations
Body Metrics Tools
log_body_metrics- Log weight and skinfoldsget_body_metrics- Get body metrics with skinfolds
Search
search_logs- Search across workouts, nutrition, and body data
Installation & Running
# Install dependencies
uv pip install -e .
# Run the MCP server (stdio interface)
uv run python -m src.main
MCP Config Example
Add to your MCP configuration:
{
"mcpServers": {
"logger": {
"command": "uv",
"args": ["run", "python", "-m", "src.main"],
"cwd": "/path/to/mcp-logger"
}
}
}
Nutrition Workflow with OpenNutrition MCP
- AI uses OpenNutrition MCP to search for foods (
search-food-by-name,get-food-by-id) - AI computes macros for the desired serving size
- AI calls
add_or_update_meal_itemwith food_id and calculated macros
Workout Planning
The AI can call get_last_workout or get_exercise_history to retrieve past sessions, then generate suggested workouts. Progression logic lives in the client AI, not this server.
Database
Data is stored in mcp_logger.db (SQLite) in the project root.
Example Usage
Log a Workout with Exercises
{
"date_time": "2026-01-06T18:30:00",
"workout_type": "Strength",
"tags": ["olympic", "speed"],
"notes": "Great session",
"exercises": [
{
"name": "Power Clean",
"category": "Olympic Lift",
"notes": "From blocks",
"sets": [
{ "reps": 3, "weight_lbs": 185 },
{ "reps": 2, "weight_lbs": 195 },
{ "reps": 1, "weight_lbs": 205 }
]
},
{
"name": "Sprint Starts",
"category": "Sprint",
"notes": "3 point stance",
"sets": [{ "reps": 6, "distance_yards": 20 }]
},
{
"name": "Single Leg Box Jumps",
"category": "Plyometric",
"notes": "5 sets of 2 each leg",
"sets": [{ "reps": 10, "side": "both" }]
}
]
}
Set Fields
Each set can include:
reps: Number of repetitions (int or float)weight_kg/weight_lbs: Weight in kg or lbsdistance_m/distance_yards: Distance for running/rowingduration_s: Duration in secondsside: "left", "right", or "both" (for unilateral exercises)rpe: Rate of Perceived Exertion (1-10)rir: Reps In Reserve (0-5)is_warmup: Boolean for warmup setsset_index: Manual set ordering (defaults to order inserted)
Log Body Metrics
{
"date": "2026-01-06",
"body_weight_kg": 85.5,
"skinfolds": {
"chest": 12,
"abdomen": 18,
"thigh": 15,
"tricep": 10,
"subscapular": 14,
"suprailiac": 16,
"midaxillary": 11
},
"notes": "Morning measurement"
}
MCP-logger
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。