MCP Logging Assistant
Provides comprehensive logging and monitoring capabilities for MCP services with real-time log tailing, advanced search, error analysis, and anomaly detection. Enables centralized log aggregation, correlation tracking, and health monitoring across all MCP ecosystem services.
README
MCP Logs Assistant
Centralized logging and monitoring for the MCP ecosystem.
Overview
The Logs Assistant provides comprehensive logging and aggregation capabilities for all MCP services with integrated analytics.
Features
- Log Collection: Aggregate logs from all services with in-memory indexing
- Real-time Tail: Follow logs in real-time
- Advanced Search: Query logs by service, level, time, correlation ID, or content
- Time Aggregation: Aggregate logs by minute, hour, or day with statistics
- Error Analysis: Analyze error patterns and trends across services
- Service Health: Monitor service health based on log metrics
- Anomaly Detection: Detect unusual patterns or spikes in log activity
- Correlation Tracking: Trace requests across services with correlation IDs
- Export: Export logs to JSON, CSV, or text formats
- Rotation & Cleanup: Automatic log rotation and retention management
Installation
npm install
Usage
As MCP Server (Claude Desktop)
Configure in Claude Desktop settings:
{
"mcpServers": {
"logs": {
"command": "node",
"args": ["/path/to/mcp-logs-assistant/index.js"]
}
}
}
As HTTP Service
npm start
The service will be available at http://localhost:9103
Available Tools
tail_logs
Follow logs in real-time from specified services.
await client.callTool({
name: 'tail_logs',
arguments: {
service: 'mcp-gateway-assistant', // optional: specific service
lines: 50 // number of recent lines to show
}
});
search_logs
Search through logs with advanced filtering.
await client.callTool({
name: 'search_logs',
arguments: {
query: 'error',
service: 'mcp-gateway-assistant', // optional
level: 'error', // optional: debug, info, warn, error
correlationId: 'req-123', // optional: trace specific request
startTime: '2024-01-01T00:00:00Z', // optional
endTime: '2024-01-02T00:00:00Z', // optional
limit: 100
}
});
get_log_stats
Get statistics about logs.
await client.callTool({
name: 'get_log_stats',
arguments: {
service: 'mcp-gateway-assistant', // optional
period: '1h' // 1h, 24h, 7d, 30d
}
});
rotate_logs
Manually trigger log rotation.
await client.callTool({
name: 'rotate_logs',
arguments: {
service: 'mcp-gateway-assistant' // optional: rotate specific service
}
});
get_errors
Get recent errors across services.
await client.callTool({
name: 'get_errors',
arguments: {
limit: 50,
include_stack: true
}
});
clear_logs
Clear old logs based on retention policy.
await client.callTool({
name: 'clear_logs',
arguments: {
older_than_days: 30,
dry_run: true // preview what would be deleted
}
});
Aggregation Tools
aggregate_logs
Aggregate logs by time period with statistics.
await client.callTool({
name: 'aggregate_logs',
arguments: {
period: 'hour', // minute, hour, day
startTime: '2024-01-01T00:00:00Z',
endTime: '2024-01-02T00:00:00Z',
service: 'mcp-gateway-assistant' // optional
}
});
analyze_errors
Analyze error patterns and trends.
await client.callTool({
name: 'analyze_errors',
arguments: {
service: 'mcp-gateway-assistant', // optional
timeRange: 86400000, // 24 hours in ms
minOccurrences: 2 // minimum occurrences to report
}
});
get_log_statistics
Get comprehensive log statistics.
await client.callTool({
name: 'get_log_statistics',
arguments: {
service: 'mcp-gateway-assistant' // optional
}
});
find_correlated_logs
Find all logs with a specific correlation ID.
await client.callTool({
name: 'find_correlated_logs',
arguments: {
correlationId: 'req-123-abc'
}
});
export_logs
Export filtered logs to file.
await client.callTool({
name: 'export_logs',
arguments: {
format: 'json', // json, csv, text
query: 'error',
service: 'mcp-gateway-assistant',
level: 'error',
startTime: '2024-01-01T00:00:00Z',
endTime: '2024-01-02T00:00:00Z',
limit: 1000
}
});
get_service_health
Analyze service health based on logs.
await client.callTool({
name: 'get_service_health',
arguments: {
service: 'mcp-gateway-assistant',
timeRange: 3600000 // 1 hour in ms
}
});
detect_anomalies
Detect anomalies in log patterns.
await client.callTool({
name: 'detect_anomalies',
arguments: {
service: 'mcp-gateway-assistant', // optional
sensitivity: 5 // 1-10, higher = more sensitive
}
});
cleanup_old_logs
Clean up logs older than retention period.
await client.callTool({
name: 'cleanup_old_logs',
arguments: {
dryRun: true // preview without deleting
}
});
Configuration
Aggregator Options
const aggregator = new LogAggregator({
logsDir: '/path/to/logs',
aggregateDir: '/path/to/aggregated',
maxMemoryLogs: 10000, // Max logs to keep in memory
indexInterval: 60000, // Re-index every minute
retentionDays: 30 // Keep logs for 30 days
});
Environment Variables
LOG_DIR=~/Documents/mcp-assistant/logs
RETENTION_DAYS=30
INDEX_INTERVAL=60000
MAX_MEMORY_LOGS=10000
Log Format
All services should use structured logging:
{
"timestamp": "2024-01-01T12:00:00Z",
"level": "info",
"service": "mcp-gateway-assistant",
"message": "Request processed",
"metadata": {
"requestId": "abc123",
"duration": 45,
"statusCode": 200
}
}
Data Storage
- Service logs:
~/Documents/mcp-assistant/logs/[service-name]/ - Aggregated data:
~/Documents/mcp-assistant/data/logs-assistant/aggregated/ - Exported logs:
~/Documents/mcp-assistant/data/logs-assistant/aggregated/export-*.{json,csv,text} - In-memory indices: Service, Correlation ID, Error Type
Development
# Run tests
npm test
# Development mode
npm run dev
# CLI usage
npm run tail -- --service gateway
npm run search -- --query "error" --level error
npm run stats -- --period 24h
Performance Features
Indexing
- Builds indices on startup for fast queries
- Updates indices incrementally every minute
- Maintains separate indices for services, correlations, and errors
- Limits in-memory cache to prevent memory issues
Query Optimization
- Uses indexed lookups for common queries
- Supports time-range filtering
- Implements result pagination
- Caches frequently accessed data
Use Cases
Troubleshooting Service Issues
// Find all errors for a service
const errors = await analyze_errors({
service: 'mcp-gateway-assistant',
timeRange: 3600000 // last hour
});
// Check service health
const health = await get_service_health({
service: 'mcp-gateway-assistant'
});
Request Tracing
// Trace a request across services
const trace = await find_correlated_logs({
correlationId: 'req-123'
});
Performance Monitoring
// Get hourly aggregations
const metrics = await aggregate_logs({
period: 'hour',
startTime: '2024-01-01T00:00:00Z'
});
// Detect anomalies
const anomalies = await detect_anomalies({
sensitivity: 5
});
Troubleshooting
Slow Queries
- Reduce time range
- Add more specific filters
- Increase cache size if memory allows
Missing Logs
- Check if logs are in expected format
- Verify log directory paths
- Ensure services are writing logs correctly
High Memory Usage
- Reduce maxMemoryLogs setting
- Implement more aggressive retention policies
- Use export and cleanup features regularly
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。