MCP Logic
Enables first-order logic reasoning including theorem proving, model finding, counterexample detection, and category theory diagram verification using pure TypeScript with no external dependencies.
README
MCP Logic
A self-contained MCP server for first-order logic reasoning, implemented in TypeScript with no external binary dependencies.
Original: https://github.com/angrysky56/mcp-logic/
Features
- Theorem Proving - Prove logical statements using resolution
- Model Finding - Find finite models satisfying premises
- Counterexample Detection - Find models showing conclusions don't follow
- Syntax Validation - Pre-validate formulas with detailed error messages
- Categorical Reasoning - Built-in support for category theory proofs
- Session-Based Reasoning - Incremental knowledge base construction
- Verbosity Control - Token-efficient responses for LLM chains
- Self-Contained - Pure npm dependencies, no external binaries
Quick Start
Installation
git clone <repository>
cd nodejs
npm install
npm run build
Running the Server
npm start
Or for development with auto-reload:
npm run dev
Claude Desktop / MCP Client Configuration
Add to your MCP configuration:
{
"mcpServers": {
"mcp-logic": {
"command": "node",
"args": ["/path/to/nodejs/dist/index.js"]
}
}
}
Available Tools
Core Reasoning Tools
| Tool | Description |
|---|---|
| prove | Prove statements using resolution |
| check-well-formed | Validate formula syntax with detailed errors |
| find-model | Find finite models satisfying premises |
| find-counterexample | Find counterexamples showing statements don't follow |
| verify-commutativity | Generate FOL for categorical diagram commutativity |
| get-category-axioms | Get axioms for category/functor/monoid/group |
Session Management Tools
| Tool | Description |
|---|---|
| create-session | Create a new reasoning session with TTL |
| assert-premise | Add a formula to a session's knowledge base |
| query-session | Query the accumulated KB with a goal |
| retract-premise | Remove a specific premise from the KB |
| list-premises | List all premises in a session |
| clear-session | Clear all premises (keeps session alive) |
| delete-session | Delete a session entirely |
Verbosity Control
All tools support a verbosity parameter to control response size:
| Level | Description | Use Case |
|---|---|---|
minimal |
Just success/result | Token-efficient LLM chains |
standard |
+ message, bindings | Default balance |
detailed |
+ Prolog program, statistics | Debugging |
{
"name": "prove",
"arguments": {
"premises": ["man(socrates)", "all x (man(x) -> mortal(x))"],
"conclusion": "mortal(socrates)",
"verbosity": "minimal"
}
}
Minimal response: { "success": true, "result": "proved" }
Detailed response: Includes prologProgram, statistics.timeMs, etc.
Formula Syntax
This server uses first-order logic (FOL) syntax compatible with Prover9:
Quantifiers
all x (...)- Universal quantification (∀x)exists x (...)- Existential quantification (∃x)
Connectives
->- Implication (→)<->- Biconditional (↔)&- Conjunction (∧)|- Disjunction (∨)-- Negation (¬)
Predicates and Terms
- Predicates:
man(x),loves(x, y),greater(x, y) - Constants:
socrates,a,b - Variables:
x,y,z(lowercase, typically single letters) - Functions:
f(x),successor(n) - Equality:
x = y
Examples
# All men are mortal, Socrates is a man
all x (man(x) -> mortal(x))
man(socrates)
# There exists someone who loves everyone
exists x all y loves(x, y)
# Transitivity of greater-than
all x all y all z ((greater(x, y) & greater(y, z)) -> greater(x, z))
Tool Usage Examples
1. Prove a Theorem
{
"name": "prove",
"arguments": {
"premises": [
"all x (man(x) -> mortal(x))",
"man(socrates)"
],
"conclusion": "mortal(socrates)"
}
}
Expected Result: Theorem proved ✓
2. Find a Counterexample
{
"name": "find-counterexample",
"arguments": {
"premises": ["P(a)"],
"conclusion": "P(b)"
}
}
Expected Result: Model found where P(a) is true but P(b) is false.
3. Validate Syntax
{
"name": "check-well-formed",
"arguments": {
"statements": [
"all x (P(x) -> Q(x))",
"P(a) &"
]
}
}
Expected Result: First formula valid, second has syntax error.
4. Session-Based Reasoning
Build up a knowledge base incrementally:
// 1. Create a session
{ "name": "create-session", "arguments": { "ttl_minutes": 30 } }
// → { "session_id": "abc-123...", "expires_at": "2024-..." }
// 2. Assert premises
{ "name": "assert-premise", "arguments": {
"session_id": "abc-123...",
"formula": "all x (man(x) -> mortal(x))"
}}
{ "name": "assert-premise", "arguments": {
"session_id": "abc-123...",
"formula": "man(socrates)"
}}
// 3. Query the KB
{ "name": "query-session", "arguments": {
"session_id": "abc-123...",
"goal": "mortal(socrates)"
}}
// → { "success": true, "result": "proved" }
// 4. Cleanup
{ "name": "delete-session", "arguments": { "session_id": "abc-123..." } }
5. Verify Categorical Diagram
{
"name": "verify-commutativity",
"arguments": {
"path_a": ["f", "g"],
"path_b": ["h"],
"object_start": "A",
"object_end": "C",
"with_category_axioms": true
}
}
Expected Result: FOL premises and conclusion for proving g ∘ f = h.
6. Get Category Theory Axioms
{
"name": "get-category-axioms",
"arguments": {
"concept": "category"
}
}
Expected Result: 6 axioms defining a category (identity, composition, associativity).
Project Structure
nodejs/
├── package.json # Project configuration
├── tsconfig.json # TypeScript configuration
├── jest.config.js # Test configuration
├── src/
│ ├── index.ts # CLI entry point
│ ├── server.ts # MCP server (13 tools)
│ ├── parser.ts # FOL tokenizer & parser
│ ├── translator.ts # FOL ↔ Prolog conversion
│ ├── logicEngine.ts # Tau-Prolog wrapper
│ ├── syntaxValidator.ts # Syntax validation
│ ├── categoricalHelpers.ts # Category theory
│ ├── modelFinder.ts # Finite model enumeration
│ ├── sessionManager.ts # Session lifecycle management
│ └── types/
│ ├── index.ts # Shared types & verbosity
│ ├── errors.ts # Structured error system
│ └── tau-prolog.d.ts
├── tests/
│ ├── basic.test.ts
│ ├── parser.test.ts
│ ├── prover.test.ts
│ ├── errors.test.ts # Error system tests
│ ├── session.test.ts # Session management tests
│ └── verbosity.test.ts # Verbosity control tests
└── dist/ # Compiled output (after build)
Development
Run Tests
npm test
Build
npm run build
Type Checking
npx tsc --noEmit
Technical Details
Logic Engine
The server uses Tau-Prolog as its core inference engine. Tau-Prolog is an ISO-compliant Prolog interpreter written entirely in JavaScript, enabling:
- Resolution-based theorem proving
- Unification and backtracking
- No external binary dependencies
Model Finder
For counterexample detection and model finding, the server includes a custom finite model enumerator that:
- Searches domains of increasing size (2-10 elements)
- Enumerates all possible interpretations
- Checks formula satisfaction
- Returns the first satisfying model
Session Manager
Sessions enable incremental knowledge base construction:
- TTL-based expiration - Sessions auto-expire (default: 30 minutes)
- Garbage collection - Expired sessions cleaned up every minute
- Memory protection - Maximum 1000 concurrent sessions
- CRUD operations - Assert, retract, list, clear premises
Structured Errors
All errors include machine-readable information:
interface LogicError {
code: LogicErrorCode; // 'PARSE_ERROR' | 'INFERENCE_LIMIT' | ...
message: string;
span?: { start, end, line, col };
suggestion?: string; // How to fix
context?: string; // The problematic input
}
Syntax Translation
Since Tau-Prolog uses Prolog syntax, the server includes a translator that converts between:
- Input: Prover9-style FOL (
all x (man(x) -> mortal(x))) - Internal: Prolog rules (
mortal(X) :- man(X).)
This translation is transparent to users.
Limitations
- Inference Depth: Complex proofs may exceed inference limits
- Model Size: Model finder is limited to small finite domains (≤10 elements)
- Function Symbols: Limited support for complex function terms
- Higher-Order Logic: Only first-order logic is supported
Troubleshooting
"No proof found" for valid theorem
- Try simpler premises
- Check for syntax errors with
check-well-formed - Increase
inference_limitfor complex proofs (default: 1000)
Model finder returns "no_model"
- Increase
max_domain_sizeparameter (default: 10) - Simplify the formula
- Check for contradictory premises
Syntax validation warnings
- Use lowercase for predicates/functions
- Add spaces around operators for readability
- Ensure balanced parentheses
Session errors
- Check session hasn't expired (default TTL: 30 minutes)
- Verify session_id is correct
- Use
list-premisesto inspect session state
API Reference
prove
interface ProveArgs {
premises: string[]; // List of FOL premises
conclusion: string; // Goal to prove
inference_limit?: number; // Max inference steps (default: 1000)
verbosity?: 'minimal' | 'standard' | 'detailed';
}
interface ProveResult {
success: boolean;
result: 'proved' | 'failed' | 'timeout' | 'error';
message?: string; // Human-readable message
proof?: string[];
bindings?: Record<string, string>[];
error?: string;
prologProgram?: string; // (detailed only)
statistics?: { timeMs: number; inferences?: number }; // (detailed only)
}
check-well-formed
interface CheckArgs {
statements: string[]; // Formulas to validate
verbosity?: 'minimal' | 'standard' | 'detailed';
}
interface ValidationResult {
valid: boolean;
formulaResults: Array<{
formula: string;
valid: boolean;
errors: string[];
warnings: string[];
}>;
}
find-model
interface FindModelArgs {
premises: string[]; // Formulas to satisfy
domain_size?: number; // Specific size or search 2-max
max_domain_size?: number; // Maximum domain size to try (default: 10)
verbosity?: 'minimal' | 'standard' | 'detailed';
}
interface ModelResult {
success: boolean;
result: 'model_found' | 'no_model' | 'timeout' | 'error';
model?: {
domainSize: number;
predicates: Record<string, string[]>;
constants: Record<string, number>;
};
interpretation?: string;
statistics?: { domainSize: number; searchedSizes: number[]; timeMs: number };
}
find-counterexample
interface CounterexampleArgs {
premises: string[];
conclusion: string;
domain_size?: number;
max_domain_size?: number; // Maximum domain size to try (default: 10)
verbosity?: 'minimal' | 'standard' | 'detailed';
}
// Returns ModelResult with counterexample interpretation
Session Tools
// create-session
interface CreateSessionArgs {
ttl_minutes?: number; // Session lifetime (default: 30, max: 1440)
}
interface CreateSessionResult {
session_id: string;
created_at: string;
expires_at: string;
ttl_minutes: number;
active_sessions: number;
}
// assert-premise
interface AssertPremiseArgs {
session_id: string;
formula: string;
}
// query-session
interface QuerySessionArgs {
session_id: string;
goal: string;
inference_limit?: number;
verbosity?: 'minimal' | 'standard' | 'detailed';
}
// retract-premise
interface RetractPremiseArgs {
session_id: string;
formula: string; // Exact formula to remove
}
// list-premises
interface ListPremisesArgs {
session_id: string;
}
interface ListPremisesResult {
session_id: string;
premise_count: number;
premises: string[];
}
// clear-session
interface ClearSessionArgs {
session_id: string;
}
// delete-session
interface DeleteSessionArgs {
session_id: string;
}
verify-commutativity
interface CommutativityArgs {
path_a: string[]; // Morphisms in first path
path_b: string[]; // Morphisms in second path
object_start: string; // Starting object
object_end: string; // Ending object
with_category_axioms?: boolean; // Include category axioms (default: true)
verbosity?: 'minimal' | 'standard' | 'detailed';
}
interface CommutativityResult {
premises: string[];
conclusion: string;
note: string;
}
get-category-axioms
interface AxiomsArgs {
concept: 'category' | 'functor' | 'natural-transformation' | 'monoid' | 'group';
functor_name?: string; // For functor axioms (default: 'F')
verbosity?: 'minimal' | 'standard' | 'detailed';
}
interface AxiomsResult {
concept: string;
axioms: string[];
}
License
MIT
Contributing
- Fork the repository
- Create a feature branch
- Run tests:
npm test - Submit a pull request
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。