mcp-lucene-server
mcp-lucene-server
README
MCP Lucene Server
Description
The MCP Lucene Server is a Java-based implementation of the Model Context Protocol (MCP) designed to provide efficient search and retrieval capabilities using Apache Lucene. This server allows you to manage and query documents, leveraging Lucene's powerful indexing and search features. It is built using Spring Boot for easy setup and deployment.
Features
-
MCP Compliance: Implements the core Model Context Protocol.
-
Lucene-Powered: Utilizes Apache Lucene for full-text search and indexing.
-
RESTful API: Provides a RESTful API for interacting with the server.
-
Document Management:
-
Upsert: Add or update documents in the Lucene index.
-
Delete: Delete documents from the Lucene index.
-
List: Retrieve a list of documents from the index.
-
-
Querying:
-
Supports complex queries using the Lucene query syntax.
-
Filtering: Filter queries based on document metadata.
-
-
Status: Check the server status.
-
Spring Boot: Built with Spring Boot for easy setup and deployment.
-
Dockerization: Includes instructions for containerizing the application using Docker.
Table of Contents
Getting Started
Prerequisites
-
Java: Java 11 or higher.
-
Maven: Maven 3.6.0 or higher.
-
Docker: Install Docker if you plan to use the Docker image.
Installation
-
Clone the repository:
git clone [https://github.com/your-username/mcp-lucene-server.git](https://github.com/your-username/mcp-lucene-server.git) cd mcp-lucene-server(Replace
your-usernamewith your GitHub username) -
Build the project using Maven:
mvn clean install
Running the Server
Without Docker
-
Run the Spring Boot application:
java -jar target/mcp-lucene-server-0.0.1-SNAPSHOT.jar(The exact name of the
.jarfile might vary slightly depending on your project version.) -
The server will start on port
8080by default.
With Docker
-
Ensure you have Docker installed: Follow the instructions on the official Docker website: https://docs.docker.com/get-docker/
-
Build the Docker image: Navigate to the root directory of your project in your terminal and run:
docker build -t mcp-lucene-server . -
Run the Docker container:
docker run -p 8080:8080 mcp-lucene-serverThis will map port
8080on your host machine to port8080inside the container.
Usage
API Endpoints
The server provides the following API endpoints:
-
GET /mcp/v1/status- Returns the status of the server.
-
POST /mcp/v1/upsert-
Upserts (inserts or updates) one or more documents.
-
Request body:
{ "documents": [ { "id": "doc1", "text": "This is the text of document 1.", "metadata": { "category": "example", "language": "english" } }, { "id": "doc2", "text": "This is document 2's text.", "metadata": { "category": "sample", "language": "spanish" } } ] }
-
-
POST /mcp/v1/query-
Queries the Lucene index.
-
Request body:
{ "queries": [ { "query": "document", "top_k": 10, "filter": { "language": "english" } }, { "query": "text search", "filter": { "category": "example" } } ] } -
query: The Lucene query string. -
top_k: (Optional) The maximum number of results to return (default: 10). -
filter: (Optional) A map of metadata fields and values to filter by.
-
-
POST /mcp/v1/delete-
Deletes documents from the Lucene index.
-
Request body:
{ "ids": ["doc1", "doc2"] }
-
-
GET /mcp/v1/list-
Lists documents from the Lucene index.
-
Request body:
{ "ids": ["doc1", "doc2"] }
-
Examples
Get server status:
curl http://localhost:8080/mcp/v1/status
Upsert documents:
curl -X POST
http://localhost:8080/mcp/v1/upsert
-H 'Content-Type: application/json'
-d '{
"documents": [
{
"id": "doc1",
"text": "This is the text of document 1.",
"metadata": {
"category": "example",
"language": "english"
}
},
{
"id": "doc2",
"text": "This is document 2''s text.",
"metadata": {
"category": "sample",
"language": "spanish"
}
}
]
}'
Query documents:
curl -X POST
http://localhost:8080/mcp/v1/query
-H 'Content-Type: application/json'
-d '{
"queries": [
{
"query": "document text",
"top_k": 5,
"filter": {
"language": "english"
}
}
]
}'
Delete documents:
curl -X POST
http://localhost:8080/mcp/v1/delete
-H 'Content-Type: application/json'
-d '{
"ids": ["doc1"]
}'
List documents:
curl -X POST
http://localhost:8080/mcp/v1/list
-H 'Content-Type: application/json'
-d '{
"ids": ["doc1", "doc2"]
}'
Configuration
The server can be configured using Spring Boot's application properties. Here are some of the key properties:
-
server.port: The port the server listens on (default: 8080). -
lucene.index.path: The path to the Lucene index directory. This is where the indexed data is stored. If not set, a default location is used. It is highly recommended to configure this to a persistent storage location.
You can set these properties in an application.properties or application.yml file in your src/main/resources directory, or by using environment variables.
Example application.properties:
server.port=8080 lucene.index.path=/path/to/lucene/index
License
This project is licensed under the Apache 2.0 License.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。