MCP Make Sound
A Model Context Protocol server for macOS that enables AI assistants to play system sounds for audio feedback, offering informational, warning, and error sound options.
Tools
play_info_sound
Play an informational system sound
play_warning_sound
Play a warning system sound
play_error_sound
Play an error system sound
README
🔊 MCP Make Sound
A Model Context Protocol (MCP) server that provides system sound playback capabilities for macOS. This server allows AI assistants and other MCP clients to play different types of system sounds for audio feedback.
✨ Features
- 🔔 Play Info Sound: Plays the "Glass" system sound for informational notifications
- ⚠️ Play Warning Sound: Plays the "Purr" system sound for warnings
- ❌ Play Error Sound: Plays the "Sosumi" system sound for errors
- 🚀 Built with TypeScript and the MCP SDK
- 🪶 Lightweight and easy to integrate
📋 Requirements
- 🍎 macOS (uses
afplayand system sounds) - 🟢 Node.js 18+
- 📝 TypeScript
🚀 Installation
- Clone this repository:
git clone <repository-url>
cd mcp-make-sound
- Install dependencies:
npm install
- Build the project:
npm run build
💡 Usage
🎵 Running the Server
Start the MCP server:
npm start
For development with auto-reload:
npm run dev
🎯 Example: Claude Integration with Warp Terminal
Here's how you can set up the MCP sound server to provide audio feedback when AI tasks complete in Warp terminal:

Configuration Rule: "When AI is done, use mcp-make-sound to play a sound. The MCP supports error, info and success. Play the right sound based on AI task outcome."
This setup allows you to:
- 🔔 Hear a pleasant chime when tasks complete successfully
- ⚠️ Get an alert sound for warnings or partial completions
- ❌ Receive clear audio feedback for errors or failures
The audio feedback helps you stay focused on other work while knowing immediately when your AI assistant has finished processing your requests.
🛠️ Available Tools
The server provides three tools:
play_info_sound
- Description: Play an informational system sound
- Parameters: None
- Sound: Glass.aiff
play_warning_sound
- Description: Play a warning system sound
- Parameters: None
- Sound: Purr.aiff
play_error_sound
- Description: Play an error system sound
- Parameters: None
- Sound: Sosumi.aiff
🔗 Integration with MCP Clients
This server can be integrated with any MCP-compatible client, such as:
- 🤖 Claude Desktop
- 🛠️ Custom MCP clients
- 🧠 AI assistants that support MCP
Example tool call:
{
"name": "play_info_sound",
"arguments": {}
}
🛠️ Development
📁 Project Structure
mcp-make-sound/
├── src/
│ └── index.ts # Main server implementation
├── dist/ # Compiled JavaScript output
├── package.json # Project configuration
├── tsconfig.json # TypeScript configuration
└── README.md # This file
📜 Scripts
npm run build- 🔨 Compile TypeScript to JavaScriptnpm start- ▶️ Run the compiled servernpm run dev- 🔄 Development mode with auto-rebuild and restart
⚙️ How It Works
- The server implements the MCP protocol using the official SDK
- It exposes three tools for different sound types
- When a tool is called, it uses macOS's
afplaycommand to play system sounds - Sounds are located in
/System/Library/Sounds/ - The server communicates over stdio transport
🔧 Technical Details
- 🔌 Transport: Standard I/O (stdio)
- 📡 Protocol: Model Context Protocol (MCP)
- 🎧 Audio Backend: macOS
afplaycommand - 🎵 Sound Files: System .aiff files
🚨 Error Handling
The server includes comprehensive error handling:
- Validates tool names
- Handles
afplaycommand failures - Returns appropriate error messages to clients
- Graceful server shutdown on errors
📄 License
MIT License
🤝 Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
🎼 System Sounds Used
- 🔔 Info: Glass.aiff - A pleasant chime sound
- ⚠️ Warning: Purr.aiff - A gentle alert sound
- ❌ Error: Sosumi.aiff - A distinctive error sound
These sounds are built into macOS and provide familiar audio feedback to users.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。