MCP MariaDB Server

MCP MariaDB Server

Enables AI assistants to interact with MariaDB databases through standard SQL operations and advanced vector/embedding-based search. Supports database management, schema inspection, and semantic document storage and retrieval with multiple embedding providers.

Category
访问服务器

README

MCP MariaDB Server

The MCP MariaDB Server provides a Model Context Protocol (MCP) interface for managing and querying MariaDB databases, supporting both standard SQL operations and advanced vector/embedding-based search. Designed for use with AI assistants, it enables seamless integration of AI-driven data workflows with relational and vector databases.


Table of Contents


Overview

The MCP MariaDB Server exposes a set of tools for interacting with MariaDB databases and vector stores via a standardized protocol. It supports:

  • Listing databases and tables
  • Retrieving table schemas
  • Executing safe, read-only SQL queries
  • Creating and managing vector stores for embedding-based search
  • Integrating with embedding providers (currently OpenAI, Gemini, and HuggingFace) (optional)

Core Components

  • server.py: Main MCP server logic and tool definitions.
  • config.py: Loads configuration from environment and .env files.
  • embeddings.py: Handles embedding service integration (OpenAI).
  • tests/: Manual and automated test documentation and scripts.

Available Tools

Standard Database Tools

  • list_databases

    • Lists all accessible databases.
    • Parameters: None
  • list_tables

    • Lists all tables in a specified database.
    • Parameters: database_name (string, required)
  • get_table_schema

    • Retrieves schema for a table (columns, types, keys, etc.).
    • Parameters: database_name (string, required), table_name (string, required)
  • get_table_schema_with_relations

    • Retrieves schema with foreign key relations for a table.
    • Parameters: database_name (string, required), table_name (string, required)
  • execute_sql

    • Executes a read-only SQL query (SELECT, SHOW, DESCRIBE).
    • Parameters: sql_query (string, required), database_name (string, optional), parameters (list, optional)
    • Note: Enforces read-only mode if MCP_READ_ONLY is enabled.
  • create_database

    • Creates a new database if it doesn't exist.
    • Parameters: database_name (string, required)

Vector Store & Embedding Tools (optional)

Note: These tools are only available when EMBEDDING_PROVIDER is configured. If no embedding provider is set, these tools will be disabled.

  • create_vector_store

    • Creates a new vector store (table) for embeddings.
    • Parameters: database_name, vector_store_name, model_name (optional), distance_function (optional, default: cosine)
  • delete_vector_store

    • Deletes a vector store (table).
    • Parameters: database_name, vector_store_name
  • list_vector_stores

    • Lists all vector stores in a database.
    • Parameters: database_name
  • insert_docs_vector_store

    • Batch inserts documents (and optional metadata) into a vector store.
    • Parameters: database_name, vector_store_name, documents (list of strings), metadata (optional list of dicts)
  • search_vector_store

    • Performs semantic search for similar documents using embeddings.
    • Parameters: database_name, vector_store_name, user_query (string), k (optional, default: 7)

Embeddings & Vector Store

Overview

The MCP MariaDB Server provides optional embedding and vector store capabilities. These features can be enabled by configuring an embedding provider, or completely disabled if you only need standard database operations.

Supported Providers

  • OpenAI
  • Gemini
  • Open models from Huggingface

Configuration

  • EMBEDDING_PROVIDER: Set to openai, gemini, huggingface, or leave unset to disable
  • OPENAI_API_KEY: Required if using OpenAI embeddings
  • GEMINI_API_KEY: Required if using Gemini embeddings
  • HF_MODEL: Required if using HuggingFace embeddings (e.g., "intfloat/multilingual-e5-large-instruct" or "BAAI/bge-m3")

Model Selection

  • Default and allowed models are configurable in code (DEFAULT_OPENAI_MODEL, ALLOWED_OPENAI_MODELS)
  • Model can be selected per request or defaults to the configured model

Vector Store Schema

A vector store table has the following columns:

  • id: Auto-increment primary key
  • document: Text of the document
  • embedding: VECTOR type (indexed for similarity search)
  • metadata: JSON (optional metadata)

Configuration & Environment Variables

All configuration is via environment variables (typically set in a .env file):

Variable Description Required Default
DB_HOST MariaDB host address Yes localhost
DB_PORT MariaDB port No 3306
DB_USER MariaDB username Yes
DB_PASSWORD MariaDB password Yes
DB_NAME Default database (optional; can be set per query) No
MCP_READ_ONLY Enforce read-only SQL mode (true/false) No true
MCP_MAX_POOL_SIZE Max DB connection pool size No 10
EMBEDDING_PROVIDER Embedding provider (openai/gemini/huggingface) No None(Disabled)
OPENAI_API_KEY API key for OpenAI embeddings Yes (if EMBEDDING_PROVIDER=openai)
GEMINI_API_KEY API key for Gemini embeddings Yes (if EMBEDDING_PROVIDER=gemini)
HF_MODEL Open models from Huggingface Yes (if EMBEDDING_PROVIDER=huggingface)

Example .env file

With Embedding Support (OpenAI):

DB_HOST=localhost
DB_USER=your_db_user
DB_PASSWORD=your_db_password
DB_PORT=3306
DB_NAME=your_default_database

MCP_READ_ONLY=true
MCP_MAX_POOL_SIZE=10

EMBEDDING_PROVIDER=openai
OPENAI_API_KEY=sk-...
GEMINI_API_KEY=AI...
HF_MODEL="BAAI/bge-m3"

Without Embedding Support:

DB_HOST=localhost
DB_USER=your_db_user
DB_PASSWORD=your_db_password
DB_PORT=3306
DB_NAME=your_default_database
MCP_READ_ONLY=true
MCP_MAX_POOL_SIZE=10

Installation & Setup

Requirements

  • Python 3.11 (see .python-version)
  • uv (dependency manager; install instructions)
  • MariaDB server (local or remote)

Steps

  1. Clone the repository
  2. Install uv (if not already):
    pip install uv
    
  3. Install dependencies
    uv pip compile pyproject.toml -o uv.lock
    
    uv pip sync uv.lock
    
  4. Create .env in the project root (see Configuration)
  5. Run the server
    python server.py
    
    Adjust entry point if needed (e.g., main.py)

Usage Examples

Standard SQL Query

{
  "tool": "execute_sql",
  "parameters": {
    "database_name": "test_db",
    "sql_query": "SELECT * FROM users WHERE id = %s",
    "parameters": [123]
  }
}

Create Vector Store

{
  "tool": "create_vector_store",
  "parameters": {
    "database_name": "test_db",
    "vector_store_name": "my_vectors",
    "model_name": "text-embedding-3-small",
    "distance_function": "cosine"
  }
}

Insert Documents into Vector Store

{
  "tool": "insert_docs_vector_store",
  "parameters": {
    "database_name": "test_db",
    "vector_store_name": "my_vectors",
    "documents": ["Sample text 1", "Sample text 2"],
    "metadata": [{"source": "doc1"}, {"source": "doc2"}]
  }
}

Semantic Search

{
  "tool": "search_vector_store",
  "parameters": {
    "database_name": "test_db",
    "vector_store_name": "my_vectors",
    "user_query": "What is the capital of France?",
    "k": 5
  }
}

Integration - Claude desktop/Cursor/Windsurf/VSCode

{
  "mcpServers": {
    "MariaDB_Server": {
      "command": "uv",
      "args": [
        "--directory",
        "path/to/mariadb-mcp-server/",
        "run",
        "server.py"
        ],
        "envFile": "path/to/mcp-server-mariadb-vector/.env"      
    }
  }
}

or If already running MCP server

{
  "servers": {
    "mariadb-mcp-server": {
      "url": "http://{host}:9001/sse",
      "type": "sse"
    }
  }
}

Logging

  • Logs are written to logs/mcp_server.log by default.
  • Log messages include tool calls, configuration issues, embedding errors, and client requests.
  • Log level and output can be adjusted in the code (see config.py and logger setup).

Testing

  • Tests are located in the src/tests/ directory.
  • See src/tests/README.md for an overview.
  • Tests cover both standard SQL and vector/embedding tool operations.

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选