mcp-meilisearch
mcp-meilisearch
README
MCP Meilisearch API Server
A comprehensive Model Context Protocol (MCP) server implementation that provides a bridge between AI models and the Meilisearch search engine using the StreamableHTTP transport. This project enables seamless integration of Meilisearch's powerful search capabilities within AI workflows.
Project Overview
This project implements an MCP (Model Context Protocol) server that provides AI models with direct access to Meilisearch's functionalities. The implementation follows a client-server architecture with these key components:
- MCP Server: Implements the Model Context Protocol to expose Meilisearch APIs as tools
- Web Client: Simple demo interface for testing the search functionality
- Command Line Client: Utility client for testing and development
Architecture
┌──────────────┐ ┌──────────────┐ ┌───────────────┐
│ Web Client │ │ MCP Server │ │ Meilisearch │
│ (Browser) │ <--> │ (Node.js) │ <-> │ Instance │
└──────────────┘ └──────────────┘ └───────────────┘
^ ^
│ │
┌──────────────┐ ┌───────────────┐
│ Command Line │ │ Document Data │
│ Client │ │ Sources │
└──────────────┘ └───────────────┘
Key Features
- StreamableHTTP Transport: Implements the StreamableHTTP transport for MCP, enabling real-time communication between clients and server
- Full Meilisearch API Support: Exposes all Meilisearch functionalities as MCP tools
- Category-based Organization: Tools are organized by functional categories
- Error Handling: Comprehensive error handling for API requests
- Web Client Demo: Simple web interface to demonstrate search capabilities
- Command Line Client: For testing and development
Available Tool Categories
The MCP server exposes Meilisearch APIs organized into these functional categories:
- System Tools: Health checks, version information, server stats
- Index Tools: Managing indexes (create, update, delete, list)
- Document Tools: Document operations (add, update, delete, retrieve)
- Search Tools: Advanced search capabilities including vector search
- Settings Tools: Configuration management for indexes
- Task Tools: Asynchronous task management
- Vector Tools: Vector search capabilities (experimental feature)
Getting Started
Prerequisites
- Node.js v20 or higher
- Meilisearch instance running locally or remotely
- API key for Meilisearch (if required by your Meilisearch configuration)
Setup
- Clone the repository
- Install dependencies:
npm install
- Create a
.envfile in the server directory with your Meilisearch configuration:
MEILISEARCH_HOST=http://localhost:7700
MEILISEARCH_API_KEY=your_master_key_here
MEILISEARCH_TIMEOUT=5000
Running the Server
Build and start the server:
npm run dev:cmd # For command line testing
# OR
npm run dev:web # For web interface testing
Accessing the Web Interface
Once running, the web demo is available at:
http://localhost:8000
Development
This project uses:
- TypeScript for type safety
- Lerna for workspace management
- Express for the web server
- Model Context Protocol SDK for AI integration
Project Structure
server/: MCP server implementationsrc/tools/: Implementation of Meilisearch API toolssrc/utils/: Utility functions for API communication and error handlingsrc/server.ts: StreamableHTTP MCP server implementation
client_web/: Web demo clientclient_cmd/: Command line client for testing
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。