MCP-Mem0

MCP-Mem0

A robust server for managing long-term agent memory using Mem0, providing efficient storage and retrieval of agent memories with a lightweight Python-based implementation.

Category
访问服务器

README

MCP-Mem0: Your Gateway to Long-Term Agent Memory 🚀

Welcome to the MCP-Mem0 repository! This project provides a robust server for managing long-term agent memory using Mem0. It also serves as a helpful template for anyone looking to build their own MCP server with Python.

Download Releases

Table of Contents

Features ✨

  • Long-Term Memory Management: Efficiently store and retrieve agent memories.
  • Python-Based: Built with Python, making it easy to customize and extend.
  • Template Structure: A great starting point for your own MCP server development.
  • Lightweight: Minimal resource requirements for easy deployment.

Getting Started 🏁

To get started with MCP-Mem0, you will need to download the latest release. Visit the Releases section to find the latest version. Download the file and execute it to set up your server.

Installation ⚙️

Follow these steps to install MCP-Mem0:

  1. Clone the Repository:

    git clone https://github.com/yellnuts/mcp-mem0.git
    cd mcp-mem0
    
  2. Install Dependencies: Ensure you have Python 3.6 or higher installed. Use pip to install the required packages:

    pip install -r requirements.txt
    
  3. Run the Server: After installing the dependencies, you can start the server with:

    python server.py
    
  4. Access the API: Open your web browser and navigate to http://localhost:5000 to access the server.

Usage 📚

Once the server is running, you can interact with it using HTTP requests. Below are some example endpoints you can use:

  • Create Memory:

    POST /memory
    

    Body:

    {
      "agent_id": "unique_agent_id",
      "memory_data": "Your memory data here"
    }
    
  • Retrieve Memory:

    GET /memory/{agent_id}
    
  • Delete Memory:

    DELETE /memory/{agent_id}
    

For more detailed API documentation, refer to the API.md file in the repository.

Contributing 🤝

We welcome contributions to MCP-Mem0! Here’s how you can help:

  1. Fork the Repository: Click the "Fork" button at the top right corner of the page.
  2. Create a Branch:
    git checkout -b feature/YourFeature
    
  3. Make Changes: Implement your feature or fix.
  4. Commit Your Changes:
    git commit -m "Add your message here"
    
  5. Push to the Branch:
    git push origin feature/YourFeature
    
  6. Open a Pull Request: Go to the original repository and click on "New Pull Request".

License 📄

This project is licensed under the MIT License. See the LICENSE file for more details.

Contact 📬

For any inquiries or support, please contact the maintainer:

Thank you for checking out MCP-Mem0! We hope you find it useful. For the latest updates and releases, don’t forget to check the Releases section again.

MCP-Mem0


Advanced Configuration 🔧

MCP-Mem0 allows for advanced configurations to suit your specific needs. You can adjust settings in the config.json file located in the root directory. Here are some of the key configurations you can modify:

  • Memory Expiry: Set how long memories should be retained.
  • Logging Level: Adjust the verbosity of server logs.
  • Port Configuration: Change the port number if needed.

Example Configuration

Here’s an example of what your config.json might look like:

{
  "memory_expiry": "30 days",
  "logging_level": "info",
  "port": 5000
}

Troubleshooting 🛠️

If you encounter issues while using MCP-Mem0, consider the following common problems:

  • Server Not Starting: Ensure that all dependencies are installed correctly.
  • API Errors: Check the request format and ensure the server is running.
  • Memory Not Saving: Verify that the agent_id is unique and correctly formatted.

Roadmap 🗺️

We have exciting plans for future updates! Here are some features we aim to implement:

  • User Authentication: Secure your memory management with user accounts.
  • Data Visualization: Graphical representation of memory data.
  • Multi-Agent Support: Handle multiple agents simultaneously.

Stay tuned for these features and more!

Community 💬

Join our community to share your experiences, ask questions, and get support:

We encourage you to engage with other users and contribute to discussions.

Final Thoughts 💭

Thank you for exploring MCP-Mem0! We believe this tool will be a valuable asset for anyone working with agent memory management. Your feedback is essential, so feel free to reach out with suggestions or improvements.

For the latest updates, don’t forget to visit the Releases section again. Happy coding!

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选