MCP Memory Server

MCP Memory Server

A Model Context Protocol server that provides knowledge graph-based persistent memory for LLMs, allowing them to store, retrieve, and reason about information across multiple conversations and sessions.

Category
访问服务器

Tools

create_entities

Create multiple new entities in the knowledge graph

create_relations

Create multiple new relations between entities in the knowledge graph. Relations should be in active voice

add_observations

Add new observations to existing entities in the knowledge graph

delete_entities

Delete multiple entities and their associated relations from the knowledge graph

delete_observations

Delete specific observations from entities in the knowledge graph

delete_relations

Delete multiple relations from the knowledge graph

read_graph

Read the entire knowledge graph

search_nodes

Search for nodes in the knowledge graph based on a query

open_nodes

Open specific nodes in the knowledge graph by their names

README

MCP Memory Server

A Model Context Protocol (MCP) server implementation that provides persistent memory capabilities for Large Language Models.

Overview

This repository contains a reference implementation of the Model Context Protocol Memory Server. The server implements a knowledge graph-based persistent memory system that enables LLMs to store, retrieve, and reason about information across conversations and sessions.

Features

  • Knowledge Graph Storage: Persistent graph-based information storage
  • Entity Management: Create and manage entities and their relationships
  • Semantic Search: Find relevant information using semantic similarity
  • Cross-session Memory: Maintain context across different conversations
  • Memory Operations: Full CRUD operations for memory management

Installation

npm install
npm run build

Usage

# Run the memory server
npx mcp-server-memory

Development

npm run watch

This will start the server in development mode with automatic rebuilding on file changes.

Running the Server

Direct Execution

For development and testing, you can run the server directly:

# Build first (if not already built)
npm run build

# Run the server
node dist/index.js

Using npm binary

After building, you can use the npm binary name:

npx mcp-server-memory

Background Process

The server runs continuously and communicates via stdio (standard input/output), which is the standard for MCP servers.

Testing with MCP Inspector

The MCP Inspector is an excellent tool for testing and debugging your memory server during development:

Start the Inspector

npx @modelcontextprotocol/inspector node dist/index.js

This will:

  1. Start a proxy server (typically on 127.0.0.1:6277)
  2. Launch the web-based inspector interface (typically at http://127.0.0.1:6274)
  3. Provide a session token for authentication

Using the Inspector

The Inspector provides several tabs for testing your server:

  • Resources tab: View and test memory resources
  • Tools tab: Test memory management tools (create, update, delete entities)
  • Prompts tab: Test any prompt templates
  • Notifications pane: Monitor server logs and messages

Development Workflow

  1. Make changes to src/index.ts
  2. Run npm run build to rebuild
  3. Start the Inspector: npx @modelcontextprotocol/inspector node dist/index.js
  4. Test your changes in the web interface
  5. Check the notifications pane for any errors

Integration with MCP Clients

To use this server with MCP clients (like Claude Desktop), add it to your client configuration:

{
  "mcpServers": {
    "memory": {
      "command": "node",
      "args": ["/path/to/your/mcp-memory-server/dist/index.js"]
    }
  }
}

Or if published to npm:

{
  "mcpServers": {
    "memory": {
      "command": "npx",
      "args": ["@modelcontextprotocol/server-memory"]
    }
  }
}

Model Context Protocol

The Model Context Protocol (MCP) is an open standard that enables seamless integration between AI applications and external data sources and tools. Learn more at modelcontextprotocol.io.

License

MIT

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选