MCP Memory Server
A Model Context Protocol server that provides knowledge graph-based persistent memory for LLMs, allowing them to store, retrieve, and reason about information across multiple conversations and sessions.
Tools
create_entities
Create multiple new entities in the knowledge graph
create_relations
Create multiple new relations between entities in the knowledge graph. Relations should be in active voice
add_observations
Add new observations to existing entities in the knowledge graph
delete_entities
Delete multiple entities and their associated relations from the knowledge graph
delete_observations
Delete specific observations from entities in the knowledge graph
delete_relations
Delete multiple relations from the knowledge graph
read_graph
Read the entire knowledge graph
search_nodes
Search for nodes in the knowledge graph based on a query
open_nodes
Open specific nodes in the knowledge graph by their names
README
MCP Memory Server
A Model Context Protocol (MCP) server implementation that provides persistent memory capabilities for Large Language Models.
Overview
This repository contains a reference implementation of the Model Context Protocol Memory Server. The server implements a knowledge graph-based persistent memory system that enables LLMs to store, retrieve, and reason about information across conversations and sessions.
Features
- Knowledge Graph Storage: Persistent graph-based information storage
- Entity Management: Create and manage entities and their relationships
- Semantic Search: Find relevant information using semantic similarity
- Cross-session Memory: Maintain context across different conversations
- Memory Operations: Full CRUD operations for memory management
Installation
npm install
npm run build
Usage
# Run the memory server
npx mcp-server-memory
Development
npm run watch
This will start the server in development mode with automatic rebuilding on file changes.
Running the Server
Direct Execution
For development and testing, you can run the server directly:
# Build first (if not already built)
npm run build
# Run the server
node dist/index.js
Using npm binary
After building, you can use the npm binary name:
npx mcp-server-memory
Background Process
The server runs continuously and communicates via stdio (standard input/output), which is the standard for MCP servers.
Testing with MCP Inspector
The MCP Inspector is an excellent tool for testing and debugging your memory server during development:
Start the Inspector
npx @modelcontextprotocol/inspector node dist/index.js
This will:
- Start a proxy server (typically on
127.0.0.1:6277) - Launch the web-based inspector interface (typically at
http://127.0.0.1:6274) - Provide a session token for authentication
Using the Inspector
The Inspector provides several tabs for testing your server:
- Resources tab: View and test memory resources
- Tools tab: Test memory management tools (create, update, delete entities)
- Prompts tab: Test any prompt templates
- Notifications pane: Monitor server logs and messages
Development Workflow
- Make changes to
src/index.ts - Run
npm run buildto rebuild - Start the Inspector:
npx @modelcontextprotocol/inspector node dist/index.js - Test your changes in the web interface
- Check the notifications pane for any errors
Integration with MCP Clients
To use this server with MCP clients (like Claude Desktop), add it to your client configuration:
{
"mcpServers": {
"memory": {
"command": "node",
"args": ["/path/to/your/mcp-memory-server/dist/index.js"]
}
}
}
Or if published to npm:
{
"mcpServers": {
"memory": {
"command": "npx",
"args": ["@modelcontextprotocol/server-memory"]
}
}
}
Model Context Protocol
The Model Context Protocol (MCP) is an open standard that enables seamless integration between AI applications and external data sources and tools. Learn more at modelcontextprotocol.io.
License
MIT
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。