MCP Memory Server
Enables AI assistants to store and retrieve long-term memories using PostgreSQL with vector similarity search. Supports semantic memory operations, tagging, and real-time updates for persistent learning across conversations.
README
MCP Memory Server
This server implements long-term memory capabilities for AI assistants using mem0 principles, powered by PostgreSQL with pgvector for efficient vector similarity search.
Features
- PostgreSQL with pgvector for vector similarity search
- Automatic embedding generation using BERT
- RESTful API for memory operations
- Semantic search capabilities
- Support for different types of memories (learnings, experiences, etc.)
- Tag-based memory retrieval
- Confidence scoring for memories
- Server-Sent Events (SSE) for real-time updates
- Cursor MCP protocol compatible
Prerequisites
- PostgreSQL 14+ with pgvector extension installed:
# In your PostgreSQL instance:
CREATE EXTENSION vector;
- Node.js 16+
Setup
- Install dependencies:
npm install
- Configure environment variables:
Copy
.env.sampleto.envand adjust the values:
cp .env.sample .env
Example .env configurations:
# With username/password
DATABASE_URL="postgresql://username:password@localhost:5432/mcp_memory"
PORT=3333
# Local development with peer authentication
DATABASE_URL="postgresql:///mcp_memory"
PORT=3333
- Initialize the database:
npm run prisma:migrate
- Start the server:
npm start
For development with auto-reload:
npm run dev
Using with Cursor
Adding the MCP Server in Cursor
To add the memory server to Cursor, you need to modify your MCP configuration file located at ~/.cursor/mcp.json. Add the following configuration to the mcpServers object:
{
"mcpServers": {
"memory": {
"command": "node",
"args": [
"/path/to/your/memory/src/server.js"
]
}
}
}
Replace /path/to/your/memory with the actual path to your memory server installation.
For example, if you cloned the repository to /Users/username/workspace/memory, your configuration would look like:
{
"mcpServers": {
"memory": {
"command": "node",
"args": [
"/Users/username/workspace/memory/src/server.js"
]
}
}
}
The server will be automatically started by Cursor when needed. You can verify it's working by:
- Opening Cursor
- The memory server will be started automatically when Cursor launches
- You can check the server status by visiting
http://localhost:3333/mcp/v1/health
Available MCP Endpoints
SSE Connection
- Endpoint:
GET /mcp/v1/sse - Query Parameters:
subscribe: Comma-separated list of events to subscribe to (optional)
- Events:
connected: Sent on initial connectionmemory.created: Sent when new memories are createdmemory.updated: Sent when existing memories are updated
Memory Operations
- Create Memory
POST /mcp/v1/memory
Content-Type: application/json
{
"type": "learning",
"content": {
"topic": "Express.js",
"details": "Express.js is a web application framework for Node.js"
},
"source": "documentation",
"tags": ["nodejs", "web-framework"],
"confidence": 0.95
}
- Search Memories
GET /mcp/v1/memory/search?query=web+frameworks&type=learning&tags=nodejs
- List Memories
GET /mcp/v1/memory?type=learning&tags=nodejs,web-framework
Health Check
GET /mcp/v1/health
Response Format
All API responses follow the standard MCP format:
{
"status": "success",
"data": {
// Response data
}
}
Or for errors:
{
"status": "error",
"error": "Error message"
}
Memory Schema
- id: Unique identifier
- type: Type of memory (learning, experience, etc.)
- content: Actual memory content (JSON)
- source: Where the memory came from
- embedding: Vector representation of the content (384 dimensions)
- tags: Array of relevant tags
- confidence: Confidence score (0-1)
- createdAt: When the memory was created
- updatedAt: When the memory was last updated
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。