MCP Merge Request Summarizer

MCP Merge Request Summarizer

Automatically generates comprehensive merge request summaries from git logs, analyzing commit history and categorizing changes into structured descriptions. Provides tools to analyze git repositories, compare branches, and create detailed summaries with change categorization, impact analysis, and review time estimates.

Category
访问服务器

README

MCP Merge Request Summarizer

An MCP (Model Context Protocol) tool that automatically generates comprehensive merge request summaries from git logs. This tool analyzes commit history, categorizes changes, and produces structured summaries suitable for merge request descriptions.

🚀 Features

  • Automatic Commit Analysis: Analyzes git logs between branches to understand changes
  • Smart Categorization: Categorizes commits by type (features, bug fixes, refactoring, etc.)
  • Comprehensive Summaries: Generates detailed merge request descriptions with:
    • Overview and statistics
    • Key changes and significant commits
    • Categorized changes (features, bug fixes, refactoring)
    • Breaking changes detection
    • File categorization and impact analysis
    • Estimated review time
  • Multiple Output Formats: Supports both Markdown and JSON output
  • Flexible Integration: Works standalone or as MCP server
  • Cross-Platform: Compatible with Windows, macOS, and Linux

📦 Installation

🚀 Quick Start (Recommended)

  1. Clone the repository:

    git clone https://github.com/yourusername/mcp-merge-request-summarizer.git
    cd mcp-merge-request-summarizer
    
  2. Run the installation script:

    • Windows: Double-click install.bat or run install.bat in PowerShell
    • Mac/Linux: Run chmod +x install.sh && ./install.sh
  3. Configure your editor:

    • See QUICK_START.md for 30-second setup instructions
    • Or check configs/README.md for detailed configuration options

Manual Installation

git clone https://github.com/yourusername/mcp-merge-request-summarizer.git
cd mcp-merge-request-summarizer
pip install -e .

From PyPI

pip install mcp-merge-request-summarizer

Note: This package is not yet published to PyPI. For now, use the installation scripts or manual installation.

🔧 Usage

As a Standalone Tool

# Basic usage (compares current branch against develop)
python -m mcp_mr_summarizer.cli

# Specify different branches
python -m mcp_mr_summarizer.cli --base main --current feature/new-feature

# Output to file
python -m mcp_mr_summarizer.cli --output mr_summary.md

# JSON output
python -m mcp_mr_summarizer.cli --format json --output summary.json

# Help
python -m mcp_mr_summarizer.cli --help

As an MCP Server

  1. Configure your MCP client (e.g., Claude Desktop, Cursor, VSCode):

    {
      "mcp.servers": {
        "merge-request-summarizer": {
          "command": "python",
          "args": ["-m", "mcp_mr_summarizer.server"]
        }
      }
    }
    
  2. Set up working directory context (recommended):

    # Set your working directory so repo_path="." works correctly
    await set_working_directory("/path/to/your/git/repo")
    
  3. Use the tools and resources through your MCP client interface:

Tools (Actions)

  • set_working_directory: Set the agent's working directory context
  • get_working_directory: Get the current working directory context
  • generate_merge_request_summary: Creates full MR summaries
  • analyze_git_commits: Provides detailed commit analysis

Resources (Data)

  • git://repo/status: Current repository status and information
  • git://commits/{base_branch}..{current_branch}: Commit history between branches
  • git://branches: List of all repository branches
  • git://files/changed/{base_branch}..{current_branch}: Files changed between branches

📊 Example Output

# feat: 4 new features and improvements

## Overview
This merge request contains 9 commits with 35 files changed (1543 insertions, 1485 deletions).

## Key Changes
- Refactor mappers in MLB, NBA, NHL, and NFL to use object initializer syntax (bdf5d9c) - 3028 lines changed
- Refactor season stats services to use base class and improve dependency injection (30de323) - 1976 lines changed

### 🚀 New Features (4)
- Add soccer metrics extraction methods and register soccer season stats service (176930f)
- Update services to use constructor injection for dependencies (29f1c46)
- Update CbStatsDaemon and CbStatsFeedPublicApi to use async host run methods (22c1202)
- Refactor PoolSeasonStatsController and related services (3a28ab4)

### 🔧 Refactoring (3)
- Refactor mappers in MLB, NBA, NHL, and NFL to use object initializer syntax (bdf5d9c)
- Refactor season stats services to use base class and improve dependency injection (30de323)
- Refactor logging in season stats services to use consistent casing (fd7b8b9)

### 📊 Summary
- **Total Commits:** 9
- **Files Changed:** 35
- **Lines Added:** 1543
- **Lines Removed:** 1485
- **Estimated Review Time:** 1h 15m

🛠️ Configuration

Quick Configuration (Recommended)

For VSCode/Cursor:

  1. Open Settings (Ctrl/Cmd + ,)
  2. For VSCode: Search for "mcp" and click "Edit in settings.json"
  3. For Cursor: Go to Tools & IntegrationsNew MCP Server
  4. Add this configuration:

VSCode (settings.json):

{
  "mcp.servers": {
    "merge-request-summarizer": {
      "command": "python",
      "args": ["-m", "mcp_mr_summarizer.server"]
    }
  }
}

Cursor (GUI or settings.json):

  • Name: merge-request-summarizer
  • Command: python
  • Arguments: ["-m", "mcp_mr_summarizer.server"]

Cursor (alternative JSON format):

{
  "mcpServers": {
    "merge-request-summarizer": {
      "command": "python",
      "args": ["-m", "mcp_mr_summarizer.server"]
    }
  }
}

For Claude Desktop:

  1. Go to Settings → MCP Servers
  2. Add new server with this configuration:
{
  "mcpServers": {
    "merge-request-summarizer": {
      "command": "python",
      "args": ["-m", "mcp_mr_summarizer.server"]
    }
  }
}

Ready-to-Use Config Files

Copy the appropriate configuration from the configs/ folder:

  • configs/vscode_settings.json - For VSCode
  • configs/cursor_settings.json - For Cursor
  • configs/claude_desktop_config.json - For Claude Desktop

See configs/README.md for detailed setup instructions.

🎯 Customization

Adding Custom Commit Categories

Extend the categorization by modifying the categorize_commit method:

def categorize_commit(self, commit: CommitInfo) -> List[str]:
    categories = []
    message_lower = commit.message.lower()
    
    # Add your custom patterns
    if any(word in message_lower for word in ['security', 'vulnerability']):
        categories.append('security')
    
    # ... existing patterns ...
    
    return categories

Customizing File Categories

Add custom file type categories:

def _categorize_files(self, files: set) -> Dict[str, List[str]]:
    categories = {
        'Services': [],
        'Models': [],
        'Controllers': [],
        'Tests': [],
        'Configuration': [],
        'Documentation': [],
        'CustomCategory': [],  # Add your custom category
        'Other': []
    }
    
    for file in files:
        if 'CustomPattern' in file:  # Add your custom pattern
            categories['CustomCategory'].append(file)
        # ... existing patterns ...
    
    return categories

🧪 Testing

# Run tests
python -m pytest tests/

# Run with coverage
python -m pytest tests/ --cov=mcp_mr_summarizer --cov-report=html

🤝 Contributing

  1. Fork the repository
  2. Create a feature branch (git checkout -b feature/amazing-feature)
  3. Make your changes
  4. Add tests for your changes
  5. Run the test suite
  6. Commit your changes (git commit -m 'Add some amazing feature')
  7. Push to the branch (git push origin feature/amazing-feature)
  8. Open a Pull Request

📝 License

This project is licensed under the MIT License - see the LICENSE file for details.

🙏 Acknowledgments

  • Built for the Model Context Protocol (MCP) ecosystem
  • Inspired by the need for better merge request documentation
  • Thanks to all contributors and users

📞 Support


Made with ❤️ for developers who want better merge request summaries

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选