MCP Midjourney

MCP Midjourney

Enables AI image and video generation using Midjourney through the AceDataCloud API. It supports comprehensive features including image creation, transformation, blending, editing, and video generation directly within MCP-compatible clients.

Category
访问服务器

README

MCP Midjourney

Python 3.10+ License: MIT MCP

A Model Context Protocol (MCP) server for AI image and video generation using Midjourney through the AceDataCloud API.

Generate AI images, videos, and manage creative projects directly from Claude, VS Code, or any MCP-compatible client.

Features

  • Image Generation - Create AI-generated images from text prompts
  • Image Transformation - Upscale, create variations, zoom, and pan images
  • Image Blending - Combine multiple images into creative fusions
  • Reference-Based Generation - Use existing images as inspiration
  • Image Description - Get AI descriptions of images (reverse prompt)
  • Image Editing - Edit images with text prompts and masks
  • Video Generation - Create videos from text and reference images
  • Video Extension - Extend existing videos to make them longer
  • Translation - Translate Chinese prompts to English
  • Task Tracking - Monitor generation progress and retrieve results

Quick Start

1. Get API Token

Get your API token from AceDataCloud Platform:

  1. Sign up or log in
  2. Navigate to Midjourney Imagine API
  3. Click "Acquire" to get your token

2. Install

# Clone the repository
git clone https://github.com/AceDataCloud/mcp-midjourney.git
cd mcp-midjourney

# Install with pip
pip install -e .

# Or with uv (recommended)
uv pip install -e .

3. Configure

# Copy example environment file
cp .env.example .env

# Edit with your API token
echo "ACEDATACLOUD_API_TOKEN=your_token_here" > .env

4. Run

# Run the server
mcp-midjourney

# Or with Python directly
python main.py

Claude Desktop Integration

Add to your Claude Desktop configuration:

macOS: ~/Library/Application Support/Claude/claude_desktop_config.json Windows: %APPDATA%\Claude\claude_desktop_config.json

{
  "mcpServers": {
    "midjourney": {
      "command": "mcp-midjourney",
      "env": {
        "ACEDATACLOUD_API_TOKEN": "your_api_token_here"
      }
    }
  }
}

Or if using uv:

{
  "mcpServers": {
    "midjourney": {
      "command": "uv",
      "args": ["run", "--directory", "/path/to/mcp-midjourney", "mcp-midjourney"],
      "env": {
        "ACEDATACLOUD_API_TOKEN": "your_api_token_here"
      }
    }
  }
}

Available Tools

Image Generation

Tool Description
midjourney_imagine Generate images from a text prompt (creates 2x2 grid)
midjourney_transform Transform images (upscale, variation, zoom, pan)
midjourney_blend Blend multiple images together
midjourney_with_reference Generate using a reference image as inspiration

Image Editing

Tool Description
midjourney_edit Edit an existing image with text prompt
midjourney_describe Get AI descriptions of an image (reverse prompt)

Video

Tool Description
midjourney_generate_video Generate video from text and reference image
midjourney_extend_video Extend existing video to make it longer

Utility

Tool Description
midjourney_translate Translate Chinese text to English for prompts

Tasks

Tool Description
midjourney_get_task Query a single task status
midjourney_get_tasks_batch Query multiple tasks at once

Information

Tool Description
midjourney_list_actions List available API actions
midjourney_get_prompt_guide Get prompt writing guide
midjourney_list_transform_actions List transformation actions

Usage Examples

Generate Image from Prompt

User: Create a cyberpunk city at night

Claude: I'll generate a cyberpunk city image for you.
[Calls midjourney_imagine with prompt="Cyberpunk city at night, neon lights, rain, futuristic, detailed --ar 16:9"]

Upscale an Image

User: Upscale the second image

Claude: I'll upscale the top-right image from the grid.
[Calls midjourney_transform with image_id and action="upscale2"]

Blend Multiple Images

User: Blend these two images: [url1] and [url2]

Claude: I'll blend these images together.
[Calls midjourney_blend with image_urls=[url1, url2]]

Generate Video

User: Animate this image [url] with gentle movement

Claude: I'll create a video from this image.
[Calls midjourney_generate_video with image_url and prompt="Gentle camera movement, cinematic"]

Generation Modes

Mode Description
fast Recommended for most use cases (default)
turbo Faster generation, uses more credits
relax Slower generation, cheaper

Configuration

Environment Variables

Variable Description Default
ACEDATACLOUD_API_TOKEN API token from AceDataCloud Required
ACEDATACLOUD_API_BASE_URL API base URL https://api.acedata.cloud
MIDJOURNEY_DEFAULT_MODE Default generation mode fast
MIDJOURNEY_REQUEST_TIMEOUT Request timeout in seconds 180
LOG_LEVEL Logging level INFO

Command Line Options

mcp-midjourney --help

Options:
  --version          Show version
  --transport        Transport mode: stdio (default) or http
  --port             Port for HTTP transport (default: 8000)

Development

Setup Development Environment

# Clone repository
git clone https://github.com/AceDataCloud/mcp-midjourney.git
cd mcp-midjourney

# Create virtual environment
python -m venv .venv
source .venv/bin/activate  # or `.venv\Scripts\activate` on Windows

# Install with dev dependencies
pip install -e ".[dev,test]"

Run Tests

# Run unit tests
pytest

# Run with coverage
pytest --cov=core --cov=tools

# Run integration tests (requires API token)
pytest tests/test_integration.py -m integration

Code Quality

# Format code
ruff format .

# Lint code
ruff check .

# Type check
mypy core tools

Build & Publish

# Install build dependencies
pip install -e ".[release]"

# Build package
python -m build

# Upload to PyPI
twine upload dist/*

Project Structure

MCPMidjourney/
├── core/                   # Core modules
│   ├── __init__.py
│   ├── client.py          # HTTP client for Midjourney API
│   ├── config.py          # Configuration management
│   ├── exceptions.py      # Custom exceptions
│   ├── server.py          # MCP server initialization
│   ├── types.py           # Type definitions
│   └── utils.py           # Utility functions
├── tools/                  # MCP tool definitions
│   ├── __init__.py
│   ├── describe_tools.py  # Image description tools
│   ├── edits_tools.py     # Image editing tools
│   ├── imagine_tools.py   # Image generation tools
│   ├── info_tools.py      # Information tools
│   ├── task_tools.py      # Task query tools
│   ├── translate_tools.py # Translation tools
│   └── video_tools.py     # Video generation tools
├── prompts/                # MCP prompt templates
│   └── __init__.py
├── tests/                  # Test suite
├── .env.example           # Environment template
├── .gitignore
├── CHANGELOG.md
├── LICENSE
├── main.py                # Entry point
├── pyproject.toml         # Project configuration
└── README.md

API Reference

This server wraps the AceDataCloud Midjourney API:

Contributing

Contributions are welcome! Please:

  1. Fork the repository
  2. Create a feature branch (git checkout -b feature/amazing)
  3. Commit your changes (git commit -m 'Add amazing feature')
  4. Push to the branch (git push origin feature/amazing)
  5. Open a Pull Request

License

MIT License - see LICENSE for details.

Links


Made with love by AceDataCloud

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选