MCP Multi-Agent Orchestration Server
Orchestrates multiple AI agents to process complex queries by intelligently splitting tasks, executing them in parallel, and synthesizing results using local Ollama LLM inference.
README
MCP Server with Multi-Agent Orchestration
A Model Context Protocol (MCP) server with multi-agent orchestration capabilities, featuring a simple web interface for querying agents. This system uses local Ollama for LLM inference and orchestrates multiple agents to process complex queries.
Features
- MCP-Compliant: Implements Model Context Protocol standards
- FastAPI Server: Modern async Python web framework
- Multi-Agent Orchestration: Intelligent query splitting and result synthesis
- Local LLM Support: Uses Ollama for local LLM inference
- Web Interface: Simple Next.js frontend for querying the server
- Automatic Agent Discovery: Agents are automatically discovered and registered
- RESTful API: Standard HTTP endpoints for agent management
Quick Start
For detailed setup instructions, see SETUP.md
Prerequisites
- Python 3.11+
- Node.js 18+
- Ollama installed and running
- Model pulled:
ollama pull llama3:latest
Quick Installation
# 1. Clone repository
git clone <repository-url>
cd mcp-server-orchestration # or whatever you name the repository
# 2. Set up Python backend
python3 -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
pip install -r requirements.txt
# 3. Set up frontend
cd frontend
npm install
cd ..
# 4. Configure environment
cp env.example .env
# Edit .env with your settings
# 5. Start Ollama (if not running)
# macOS: Open Ollama.app
# Linux: ollama serve
# 6. Start servers
# Terminal 1: MCP Server
source venv/bin/activate
python3 -m uvicorn backend.server.mcp_server:app --host 0.0.0.0 --port 8000
# Terminal 2: Frontend
cd frontend
npm run dev
Access the frontend at http://localhost:3000
Architecture
Components
-
MCP Server (Python/FastAPI)
- Orchestrates multi-agent workflows
- Uses Ollama for LLM inference
- Runs on port 8000
-
Frontend (Next.js/React)
- Simple chat interface
- Connects to MCP server
- Runs on port 3000
-
Agents
- Internal Agent: Simulates internal document retrieval
- External Agent: Simulates external database queries
-
Orchestrator
- Analyzes user queries using LLM
- Splits queries into agent-specific tasks
- Synthesizes results from multiple agents
Workflow
User Query → Orchestrator → Query Analysis (LLM)
↓
Determine Agents Needed
↓
Generate Optimized Queries
↓
Execute Agents (Parallel)
↓
Compare & Synthesize Results (LLM)
↓
Return Final Answer
API Endpoints
MCP Server (Port 8000)
GET /health- Health checkPOST /orchestrate- Process user query{ "query": "your query here" }GET /mcp/agents- List all registered agentsGET /mcp/resources- List all MCP resourcesPOST /discover- Trigger agent discovery
Frontend (Port 3000)
GET /- Main chat interfacePOST /api/chat- Chat endpoint (forwards to MCP server)
Project Structure
mcp-server-orchestration/ # Project root
├── backend/ # Backend MCP Server (Python/FastAPI)
│ ├── server/
│ │ └── mcp_server.py # FastAPI server
│ ├── agents/
│ │ ├── internal_agent.py # Internal document agent
│ │ └── external_agent.py # External database agent
│ ├── orchestrator/
│ │ └── orchestrator.py # Query orchestration
│ ├── services/
│ │ └── ollama_service.py # Ollama API wrapper
│ ├── interfaces/
│ │ └── agent.py # Agent interface
│ ├── registry/
│ │ └── registry.py # Agent registry
│ └── discovery/
│ └── agent_discovery.py # Auto-discovery
├── frontend/ # Frontend UI (Next.js)
│ ├── app/
│ │ ├── api/chat/route.ts # Chat API
│ │ └── components/chat.tsx # Chat UI
│ └── package.json
├── requirements.txt # Python dependencies
├── env.example # Environment template
├── SETUP.md # Detailed setup guide
└── README.md # This file
Configuration
Create a .env file from env.example:
PORT=8000
LOG_LEVEL=INFO
ENV=development
ALLOWED_ORIGINS=*
OLLAMA_BASE_URL=http://localhost:11434
OLLAMA_MODEL=llama3:latest
Documentation
- SETUP.md - Comprehensive setup guide with step-by-step instructions
- QUICKSTART.md - Quick start guide (if exists)
Development
Running Tests
pytest
Viewing Logs
MCP server logs are written to /tmp/mcp_server.log:
tail -f /tmp/mcp_server.log
Helper Scripts
./start_server.sh- Start MCP server with log viewing./view_logs.sh- View MCP server logs
Troubleshooting
See SETUP.md for detailed troubleshooting guide.
Common issues:
- Ollama not running: Start Ollama and verify with
curl http://localhost:11434/api/tags - Port conflicts: Kill processes on ports 8000 or 3000
- Module not found: Ensure virtual environment is activated and dependencies installed
License
[Add your license information here]
Contributing
- Create a feature branch
- Make your changes
- Add tests
- Submit a pull request
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。