MCP Multiagent Bridge
Enables secure coordination between multiple LLM agents through authenticated messaging, status updates, and conversation management. Features automatic secret redaction, rate limiting, and audit trails for safe multi-agent collaboration in development environments.
README
MCP Multiagent Bridge
Production-ready Python MCP server for secure multi-agent coordination with comprehensive safeguards.
Overview
Enables multiple LLM agents (Claude, Codex, GPT, etc.) to collaborate safely through the Model Context Protocol without sharing workspaces or credentials. Built with security-first architecture and production-grade safeguards.
Use cases:
- Backend agent coordinating with frontend agent on different codebases
- Security review agent validating changes from development agent
- Specialized agents collaborating on complex multi-step workflows
- Any scenario requiring isolated agents to communicate securely
Key Features
🔒 Security Architecture
Authentication & Authorization:
- HMAC-SHA256 session token authentication
- Automatic secret redaction (API keys, passwords, tokens, private keys)
- 3-hour session expiration with automatic cleanup
- SQLite WAL mode for atomic, race-condition-free operations
4-Stage YOLO Guard™: Command execution (optional) requires multiple confirmation layers:
- Environment gate - explicit
YOLO_MODE=1opt-in - Interactive typed confirmation phrase
- One-time validation code (prevents automation)
- Time-limited approval tokens (5-minute TTL, single-use)
Rate Limiting:
- Token bucket algorithm with configurable windows
- Default: 10 requests/minute, 100/hour, 500/day
- Per-session tracking with automatic reset
- Prevents abuse while allowing legitimate bursts
Audit Trail:
- Comprehensive JSONL logging of all operations
- Timestamps, session IDs, actions, results
- Tamper-evident sequential logging
- Supports compliance and forensic analysis
🏗️ Production-Ready Architecture
- Message-only bridge - No auto-execution, returns proposals only
- Schema validation - Strict JSON schemas for all MCP tools
- Command validation - Configurable whitelist/blacklist patterns
- Comprehensive error handling - Graceful degradation, informative errors
- Extensible design - Plugin architecture for future backends
📦 Platform Support
Works with any MCP-compatible LLM:
- Claude Code, Claude Desktop, Claude API
- OpenAI models (via MCP adapters)
- Anthropic API models
- Custom/future models (not tied to specific backend)
Installation
# Clone repository
git clone https://github.com/dannystocker/mcp-multiagent-bridge.git
cd mcp-multiagent-bridge
# Install dependencies
pip install mcp>=1.0.0
# Run tests
python test_security.py
Full setup: See QUICKSTART.md
Documentation
Getting Started:
- QUICKSTART.md - 5-minute setup guide
- EXAMPLE_WORKFLOW.md - Real-world collaboration scenarios
Security & Compliance:
- SECURITY.md - Threat model, responsible disclosure policy
- YOLO_MODE.md - Command execution safety guide
- Policy compliance: Anthropic AUP, OpenAI Usage Policies
Contributing:
- CONTRIBUTING.md - Development setup, PR workflow
- LICENSE - MIT License
Technical Stack
- Python 3.11+ - Modern Python with type hints
- SQLite - Atomic operations with WAL mode
- MCP Protocol - Model Context Protocol integration
- pytest - Comprehensive test suite
- CI/CD - GitHub Actions (tests, security scanning, linting)
Project Statistics
- Lines of Code: ~5,200 (including tests + documentation)
- Test Coverage: Core security components verified
- Documentation: 2,000+ lines across 7 markdown files
- Dependencies: 1 (mcp, pinned for reproducibility)
- License: MIT
Development
# Install dev dependencies
pip install -r requirements.txt
# Install pre-commit hooks
pip install pre-commit
pre-commit install
# Run test suite
pytest
# Run security tests
python test_security.py
See CONTRIBUTING.md for complete development workflow.
Security Notice
⚠️ Beta Software: Designed for development/testing environments with human supervision.
Recommended for:
- Development and testing workflows
- Isolated workspaces
- Human-supervised operations
- Prototype multi-agent systems
Not recommended for:
- Production systems without additional safeguards
- Unattended automation
- Critical infrastructure
- Environments with untrusted agents
See SECURITY.md for complete security considerations and threat model.
Support
- Issues: GitHub Issues
- Discussions: GitHub Discussions
- Security: See SECURITY.md for responsible disclosure
License
MIT License - Copyright © 2025 Danny Stocker
See LICENSE for full terms.
Acknowledgments
Built with Claude Code and Model Context Protocol.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。