
MCP-Odoo
A bridge that allows AI agents to access and manipulate Odoo ERP data through a standardized Model Context Protocol interface, supporting partner information, accounting data, financial records reconciliation, and invoice queries.
README
MCP-Odoo
Model Context Protocol server for Odoo integration, allowing AI agents to access and manipulate Odoo data through a standardized interface.
Overview
MCP-Odoo provides a bridge between Odoo ERP systems and AI agents using the Model Context Protocol (MCP). This enables AI systems to:
- Access partner information
- View and analyze accounting data including invoices and payments
- Perform reconciliation of financial records
- Query vendor bills and customer invoices
Features
- 🔌 Easy integration with Odoo instances
- 🤖 Standard MCP interface for AI agent compatibility
- 📊 Rich accounting data access
- 🔒 Secure authentication with Odoo
Installation
# Clone the repository
git clone https://github.com/yourtechtribe/model-context-protocol-mcp-odoo.git
cd model-context-protocol-mcp-odoo
# Install dependencies
pip install -r requirements.txt
Configuration
Create a .env
file in the project root with the following variables:
ODOO_URL=https://your-odoo-instance.com
ODOO_DB=your_database
ODOO_USERNAME=your_username
ODOO_PASSWORD=your_password
HOST=0.0.0.0
PORT=8080
Usage
Start the MCP server:
# Using the SSE transport (default)
python -m mcp_odoo_public
# Using stdio for local agent integration
python -m mcp_odoo_public --transport stdio
Documentation
Comprehensive documentation is available in the docs/
directory:
- Documentation Home - Start here for an overview of all documentation
- Implementation Guide - Detailed architecture and implementation details
- Accounting Functionality - In-depth guide to accounting features
- Troubleshooting - Solutions for common issues
- Usage Examples - Practical examples to get started
Development
Project Structure
mcp_odoo_public/
: Main packageodoo/
: Odoo client and related modulesresources/
: MCP resources definitions (tools and schemas)server.py
: MCP server implementationconfig.py
: Configuration managementmcp_instance.py
: FastMCP instance definition
Adding New Resources
Resources define the capabilities exposed to AI agents through MCP. To add a new resource:
- Create a new file in the
resources/
directory - Define your resource using the
@mcp.tool()
decorator - Import your resource in
resources/__init__.py
For detailed instructions, see the Implementation Guide.
License
This project is licensed under the MIT License - see the LICENSE file for details.
Author
Albert Gil López
- Email: albert.gil@yourtechtribe.com
- LinkedIn: https://www.linkedin.com/in/albertgilopez/
Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
推荐服务器

Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。