mcp-open-webresearch

mcp-open-webresearch

A proxy-aware MCP server that enables web searching across multiple engines and automated markdown content extraction from webpages. It features a deep research agent for recursive searching and synthesis, supporting complex network environments through SOCKS5 and HTTP proxies.

Category
访问服务器

README

<div align="center">

mcp-open-webresearch

Version Issues

</div>

Proxy-aware Model Context Protocol (MCP) server for web searching and content extraction.

Designed to be robust and compatible with various network environments, including those using SOCKS and HTTP proxies.

Features

  • Dynamic Engine Discovery: Engines are loaded dynamically from the src/infrastructure/search/ directory. Adding a new engine requires only a new folder and file, without modifying core logic.
  • Multi-Engine Search: Aggregates results from Bing, DuckDuckGo, and Brave.
  • Deep Research (search_deep): Recursive research agent that performs multi-round searching, citation extraction, and answer synthesis.
  • Ephemeral Downloads: In-memory storage for Deep Search reports using a 100MB bounded LRU cache with 10-minute auto-expiration.
  • Centralized Throttling: Rate limit management (search and pagination cooldowns) across prioritized engines.
  • Smart Fetch: Configurable fetching utility (impit) with two operational profiles:
    • Browser Mode: Includes modern browser headers (User-Agent, Client Hints) for compatibility with sites requiring browser-standard requests.
    • Standard Mode: Uses a minimal HTTP client profile for environments where browser-like identification is not required.
  • Result Sampling: Optional LLM-based filtering to assess result relevance.
  • Content Extraction: Webpage visiting and markdown extraction tool (visit_webpage) using a headless browser.
  • Proxy Support: Full support for SOCKS5, HTTPS, and HTTP proxies.
  • Configuration: Configurable via environment variables and CLI arguments.
  • Deployment: Docker images available for production and testing.

Credits

This project includes work from the following contributors:

  • Manav Kundra: Initial implementation of the server.
  • Aasee: Added multiple search engines and Docker support.
  • mzxrai: Core logic for the visit_page tool.

Installation & Quick Start

Docker (Recommended)

Latest Stable Release:

docker pull ghcr.io/rinaldowouterson/mcp-open-webresearch:latest
docker run -p 3000:3000 ghcr.io/rinaldowouterson/mcp-open-webresearch:latest

Test/Debug Image:

docker pull ghcr.io/rinaldowouterson/mcp-open-webresearch:test

Local Installation

To run the server locally (e.g., in Claude Desktop or Cline):

[!NOTE] Replace /absolute/path/to/project with your actual project path.

Configuration (mcp_config.json):

{
  "mcpServers": {
    "open-webresearch": {
      "command": "npm",
      "args": [
        "run",
        "start:sampling",
        "--silent",
        "--prefix",
        "/absolute/path/to/project"
      ],
      "headers": {},
      "disabled": false
    }
  }
}

Remote Server (Streamable HTTP)

Endpoint: http://localhost:3000/mcp

Configuration:

{
  "mcpServers": {
    "open-webresearch": {
      "serverUrl": "http://localhost:3000/mcp",
      "headers": {}
    }
  }
}

Client Configuration & Timeouts

Deep Search processes can take several minutes to complete. Some MCP clients (like Cline and RooCode) have a default timeout of 60 seconds, which will cause the operation to fail.

You MUST configure a higher timeout in your client settings.

Cline (cline_mcp_settings.json)

Add the "timeout" parameter (in seconds). Recommended: 1800 (30 minutes).

{
  "mcpServers": {
    "open-webresearch": {
      "disabled": false,
      "timeout": 1800,
      "type": "stdio",
      "command": "npm",
      "args": [
        "run",
        "start:sampling",
        "--silent",
        "--prefix",
        "/absolute/path/to/mcp-open-webresearch"
      ],
      "autoApprove": []
    }
  }
}

RooCode (mcp_settings.json)

RooCode also respects the timeout parameter.

{
  "mcpServers": {
    "open-webresearch": {
      "disabled": false,
      "timeout": 1800,
      "command": "npm",
      "args": [
        "run",
        "start:sampling",
        "--silent",
        "--prefix",
        "/absolute/path/to/mcp-open-webresearch"
      ],
      "alwaysAllow": []
    }
  }
}

Antigravity / Windsurf (mcp_config.json)

Antigravity / Windsurf handles long-running tools natively, but if they let you configure a timeout, it is best practice to do so.

{
  "mcpServers": {
    "open-webresearch": {
      "command": "npm",
      "args": [
        "run",
        "start:sampling",
        "--silent",
        "--prefix",
        "/absolute/path/to/mcp-open-webresearch"
      ],
      "disabled": false
    }
  }
}

Developer Guide: Adding New Engines

To add a new search engine:

  1. Create Directory: src/infrastructure/search/{engine_name}/

  2. Implement Logic: Create {engine_name}.ts with the fetching/parsing logic.

  3. Export Interface: Create index.ts exporting the SearchEngine interface:

    import type { SearchEngine } from "../../../types/search.js";
    import { searchMyEngine } from "./my_engine.js";
    import { isThrottled } from "../../throttle.js"; // Optional
    
    export const engine: SearchEngine = {
      name: "my_engine",
      search: searchMyEngine,
      isRateLimited: () => isThrottled("my_engine"),
    };
    
  4. Restart: The server will automatically discover and load the new engine.


Build and Run

Locally

# 1. Clone
git clone https://github.com/rinaldowouterson/mcp-open-webresearch.git
cd mcp-open-webresearch

# 2. Install
npm install

# 3. Build & Start
npm run build
npm start

Docker

# Production
docker build -t mcp-websearch .
docker run -p 3000:3000 mcp-websearch

# Testing
npm run test:docker

Testing

Unit & E2E Tests

Uses Vitest for testing. Includes dynamic contract tests for all discovered engines.

npm test

Compliance Tests

Verifies the "Smart Fetch" behavior (User-Agent headers) usage using a local mock server.

npm run test .test/engines/smart_fetch_mode.test.ts

Infrastructure Validation

Validates Docker image builds and basic functionality.

npm run test:infrastructure

Available Scripts

Command Description
npm run build Compiles TypeScript to build/ folder.
npm run watch Recompiles on file changes.
npm run inspector Launches MCP inspector UI.
npm start Runs the compiled server.
npm test Runs local tests.
npm run test:docker Runs tests in Docker container.
npm run test:infrastructure Validates docker images.
npm run generate-certs Generates self-signed certificates for testing.

Configuration

Configuration is managed via Environment Variables or CLI arguments.

Variable Default Description
PORT 3000 Server port.
PUBLIC_URL http://localhost:port Public URL for download links.
ENABLE_CORS false Enable CORS.
CORS_ORIGIN * Allowed CORS origin.
DEFAULT_SEARCH_ENGINES bing,duckduckgo,brave Default engines list.
ENABLE_PROXY false Enable proxy support.
HTTP_PROXY - HTTP Proxy URL.
HTTPS_PROXY - HTTPS Proxy URL.
SOCKS5_PROXY - SOCKS5 Proxy URL (Highest Priority).
SAMPLING false Enable result sampling.
SKIP_IDE_SAMPLING false Prefer external API over IDE.
LLM_BASE_URL - External LLM API base URL.
LLM_API_KEY - External LLM API key.
LLM_NAME - External LLM model name.
LLM_TIMEOUT_MS 30000 Timeout for external LLM calls.
DEEP_SEARCH_MAX_LOOPS 20 Max research iterations.
DEEP_SEARCH_RESULTS_PER_ENGINE 5 Results per engine per round.
DEEP_SEARCH_SATURATION_THRESHOLD 0.6 Threshold to stop research early.
DEEP_SEARCH_MAX_CITATION_URLS 10 Max URLs to visit for citations.
DEEP_SEARCH_REPORT_RETENTION_MINUTES 10 Download expiration time (minutes).
WRITE_DEBUG_TERMINAL false Log debug output to stdout.
WRITE_DEBUG_FILE false Log debug output to file.

CLI Arguments

CLI arguments override environment variables.

Argument Description
--port <number> Port to listen on.
--debug Enable debug logging (stdout).
--debug-file Enable debug logging (file).
--cors Enable CORS.
--proxy <url> Proxy URL (http, https, socks5).
--engines <items> Comma-separated list of engines.
--sampling Enable sampling.
--no-sampling Disable sampling.

Search Pipeline & Scoring

The server uses a multi-stage pipeline to aggregate and refine search results:

1. Multi-Engine Retrieval

Concurrent requests are dispatched to all configured engines (Bing, Brave, DuckDuckGo). Raw results are collected into a single pool.

2. Consensus Scoring & Deduplication

Results are grouped by their canonical URL (protocol/www-agnostic hash).

  • Deduplication: Multiple entries for the same URL are merged.
  • Scoring: A consensusScore is calculated for each unique URL:
    • Inverted Rank Sum: Sum of inverted ranks ($1/rank$) across engines. Higher placement results in a higher score.
    • Engine Boost: Multiplies the sum by the number of unique engines that identified the URL. This prioritizes multi-provider agreement.
  • Sorting: The final list is sorted by the calculated consensusScore in descending order.

3. LLM Sampling (Optional)

If SAMPLING=true, the top-ranked results are sent to an LLM to evaluate semantic relevance to the query.

  • Filtering: Sampling acts as a binary filter. It removes results identified as irrelevant (spam, off-topic).
  • Final Set: The original consensus scores are preserved. Only the composition of the list changes.

LLM Sampling Strategy

When sampling is enabled, the server follows a tiered resolution logic to select which LLM to use:

SKIP_IDE_SAMPLING IDE Available API Configured Resolution
false (default) IDE Sampling
true IDE Sampling
false External API
true ✅ OR ❌ External API
false OR true No Sampling

[!TIP] You can use a model without API key, the LLM_API_KEY value is optional.

[!IMPORTANT] Deep Search Compatibility: The search_deep tool strictly requires LLM capability (either via IDE or API). If neither is available, the tool will appear in the MCP list but will throw an error upon execution.


Tools Documentation

search_deep

Recursive research agent for deep investigation. Searches multiple sources, extracts citations, and synthesizes a comprehensive answer.

Requires LLM Sampling capability.

Input:

{
  "objective": "Deep research goal",
  "max_loops": 3,
  "results_per_engine": 5,
  "max_citation_urls": 10,
  "engines": ["bing", "brave"],
  "attach_context": false
}

Output: A structured Markdown report including a reference list. If configured, a Download URL at the top of the output permits downloading the results as a file.

search_web

Performs a search across configured engines.

Input:

{
  "query": "search query",
  "max_results": 10,
  "engines": ["bing", "brave"],
  "sampling": true
}

visit_webpage

Visits a URL and returns markdown content.

Input:

{
  "url": "https://example.com/article",
  "capture_screenshot": false
}

set_engines

Updates default search engines.

Input:

{
  "engines": ["duckduckgo", "brave"]
}

get_engines

Returns configured search engines.

set_sampling

Enables or disables result sampling.

Input:

{
  "enabled": true
}

get_sampling

Returns current sampling status.


📥 Ephemeral Downloads

Deep Search results are served via an in-memory buffer cache.

  • Storage: Reports are stored as Buffer objects in the C++ heap to avoid V8 string memory limits.
  • Expiration: Each individual entry expires exactly 10 minutes after creation. Access operations (get) do not extend the time-to-live (TTL).
  • Memory Safety: The cache is bounded by a 100MB ceiling. When the limit is reached, a Least Recently Used (LRU) eviction policy removes the oldest entries.
  • URL Configuration: Link generation depends on the PUBLIC_URL variable to ensure accessible download endpoints in proxied environments.

Roadmap

  • [x] Deep Search: Recursive research and synthesis engine.
  • [ ] Keyless GitHub Adapter: Implement adapter for GitHub content access.

License

Apache License 2.0. See LICENSE.

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选