MCP Optimizer
Enables solving linear programming (LP) and mixed-integer linear programming (MILP) optimization problems through natural language, with built-in simplex and branch-and-cut solvers plus infeasibility diagnostics. Includes optional OR-Tools fallback for larger problems and supports parsing optimization problems from natural language descriptions.
README
Crew Optimizer
Crew Optimizer rebuilds the original optimisation project around the CrewAI ecosystem. It provides reusable CrewAI tools and agents capable of solving linear programs via SciPy's HiGHS backend, exploring mixed-integer models with a lightweight branch-and-bound search (or OR-Tools fallback), translating natural language prompts into LP JSON, and diagnosing infeasibility. You can embed the tools inside your own crews or call them programmatically through the OptimizerCrew convenience wrapper, or serve them over the MCP protocol for clients such as Smithery.
Installation
python -m venv .venv
source .venv/bin/activate
pip install -e .[mip]
This installs Crew Optimizer together with optional OR-Tools support for MILP solving. Add pytest, ruff, or other dev tools as needed (pip install pytest).
Quick Usage
from crew_optimizer import OptimizerCrew
crew = OptimizerCrew(verbose=False)
lp_model = {
"name": "diet-toy",
"sense": "min",
"objective": {
"terms": [
{"var": "x", "coef": 3},
{"var": "y", "coef": 2},
],
"constant": 0,
},
"variables": [
{"name": "x", "lb": 0},
{"name": "y", "lb": 0},
],
"constraints": [
{
"name": "c1",
"lhs": {
"terms": [
{"var": "x", "coef": 1},
{"var": "y", "coef": 2},
],
"constant": 0,
},
"cmp": ">=",
"rhs": 8,
},
{
"name": "c2",
"lhs": {
"terms": [
{"var": "x", "coef": 3},
{"var": "y", "coef": 1},
],
"constant": 0,
},
"cmp": ">=",
"rhs": 6,
},
],
}
solution = crew.solve_lp(lp_model)
print(solution)
To integrate with a wider multi-agent workflow, call crew.build_crew() to obtain a Crew populated with the LP, MILP, and parser agents. Provide model inputs through CrewAI’s shared context as usual.
MCP / Smithery Hosting
Crew Optimizer ships an MCP server (python -m crew_optimizer.server) that wraps the same solvers. The repository already contains a Smithery manifest (smithery.json) and build config (smithery.yaml).
- Push the repository to GitHub.
- In Smithery, choose Publish an MCP Server, connect GitHub, and select the repo.
- Smithery installs the package (
pip install .) and launchesmcp http src/crew_optimizer/server.py --port 3333using the bundled startup script. - The server exposes the following tools:
solve_linear_programsolve_mixed_integer_programparse_natural_languagediagnose_infeasibility
For local testing:
mcp http src/crew_optimizer/server.py --port 3333 --cors "*"
Testing
Install test dependencies (pip install pytest) and run:
python -m pytest
The suite covers the LP solver, MILP branch-and-bound, and the NL parser.
Licence
Distributed under the MIT Licence. See LICENSE for details.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。