MCP PDF Server
A PDF processing server that extracts text via normal parsing or OCR, and retrieves images from PDF files through the MCP protocol with a built-in web debugger.
README
📄 MCP PDF Server
A PDF file reading server based on FastMCP.
Supports PDF text extraction, OCR recognition, and image extraction via the MCP protocol, with a built-in web debugger for easy testing.
🚀 Features
-
read_pdf_text
Extracts normal text from a PDF (page by page). -
read_by_ocr
Uses OCR to recognize text from scanned or image-based PDFs. -
read_pdf_images
Extracts all images from a specified PDF page (Base64 encoded output).
📂 Project Structure
mcp-pdf-server/
├── pdf_resources/ # Directory for uploaded and processed PDF files
├── txt_server.py # Main server entry point
└── README.md # Project documentation
⚙️ Installation
Recommended Python version: 3.9+
pip install pymupdf mcp
Note: To use OCR features, you may need a MuPDF build with OCR support or external OCR libraries.
🔦 Start the Server
Run the following command:
python txt_server.py
You should see logs like:
Serving on http://127.0.0.1:6231
🌐 Web Debugging Interface
Open your browser and visit:
http://127.0.0.1:6231
- Select a tool from the left panel
- Fill in parameters on the right panel
- Click "Run" to test the tool
No coding required — easily debug and test via the web UI.
🛠️ API Tool List
| Tool | Description | Input Parameters | Returns |
|---|---|---|---|
read_pdf_text |
Extracts normal text from PDF pages | file_path, start_page, end_page |
List of page texts |
read_by_ocr |
Recognizes text via OCR | file_path, start_page, end_page, language, dpi |
OCR extracted text |
read_pdf_images |
Extracts images from a PDF page | file_path, page_number |
List of images (Base64 encoded) |
📝 Example Usage
Extract text from pages 1 to 5:
mcp run read_pdf_text --args '{"file_path": "pdf_resources/example.pdf", "start_page": 1, "end_page": 5}'
Perform OCR recognition on page 1:
mcp run read_by_ocr --args '{"file_path": "pdf_resources/example.pdf", "start_page": 1, "end_page": 1, "language": "eng"}'
Extract all images from page 3:
mcp run read_pdf_images --args '{"file_path": "pdf_resources/example.pdf", "page_number": 3}'
📢 Notes
- Files must be placed inside the
pdf_resources/directory, or an absolute path must be provided. - OCR functionality requires appropriate OCR support in the environment.
- When processing large files, adjust memory and timeout settings as needed.
📜 License
This project is licensed under the MIT License.
For commercial use, please credit the original source.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。