MCP Perplexica

MCP Perplexica

Enables LLMs to perform web searches through Perplexica with multiple focus modes (web, academic, YouTube, Reddit) and optimization settings, returning AI-generated responses with source citations.

Category
访问服务器

README

MCP Perplexica

MCP server proxy for Perplexica search API.

This server allows LLMs to perform web searches through Perplexica using the Model Context Protocol (MCP).

Features

  • 🔍 Web search through Perplexica
  • 📚 Multiple focus modes (web, academic, YouTube, Reddit, etc.)
  • ⚡ Configurable optimization modes (speed, balanced, quality)
  • 🔧 Customizable model configuration
  • 📖 Source citations in responses
  • 🚀 Multiple transport modes (stdio, SSE, Streamable HTTP)

Prerequisites

  • Python 3.11+
  • UV package manager
  • Running Perplexica instance

Installation

  1. Clone the repository:
git clone https://github.com/Kaiohz/mcp-perplexica.git
cd mcp-perplexica
  1. Install dependencies with UV:
uv sync
  1. Create your environment file:
cp .env.example .env
  1. Edit .env with your configuration:
# Perplexica API
PERPLEXICA_URL=http://localhost:3000

# Transport: stdio (default), sse, or streamable-http
TRANSPORT=stdio
HOST=127.0.0.1
PORT=8000

# Model configuration
DEFAULT_CHAT_MODEL_PROVIDER_ID=your-provider-id
DEFAULT_CHAT_MODEL_KEY=anthropic/claude-sonnet-4.5
DEFAULT_EMBEDDING_MODEL_PROVIDER_ID=your-provider-id
DEFAULT_EMBEDDING_MODEL_KEY=openai/text-embedding-3-small

Usage

Transport Modes

The server supports three transport modes:

Transport Description Use Case
stdio Standard input/output CLI tools, Claude Desktop
sse Server-Sent Events over HTTP Web clients
streamable-http Streamable HTTP (recommended for production) Production deployments

Running with Docker Compose

The easiest way to run both Perplexica and MCP Perplexica together:

# Copy and configure environment files
cp .env.example .env
cp .env.perplexica.example .env.perplexica

# Edit .env with your MCP Perplexica settings
# Edit .env.perplexica with your Perplexica settings

# Start services
docker compose up -d

This starts:

  • Perplexica on http://localhost:3000
  • MCP Perplexica connected to Perplexica

Running the MCP Server (without Docker)

Stdio mode (default)

uv run python -m main

SSE mode

TRANSPORT=sse PORT=8000 uv run python -m main

Streamable HTTP mode

TRANSPORT=streamable-http PORT=8000 uv run python -m main

Claude Desktop Configuration

Add to your Claude Desktop configuration (~/Library/Application Support/Claude/claude_desktop_config.json on macOS):

{
  "mcpServers": {
    "perplexica": {
      "command": "uv",
      "args": ["run", "--directory", "/path/to/mcp-perplexica", "python", "-m", "main"],
      "env": {
        "PERPLEXICA_URL": "http://localhost:3000",
        "TRANSPORT": "stdio",
        "DEFAULT_CHAT_MODEL_PROVIDER_ID": "your-provider-id",
        "DEFAULT_CHAT_MODEL_KEY": "anthropic/claude-sonnet-4.5",
        "DEFAULT_EMBEDDING_MODEL_PROVIDER_ID": "your-provider-id",
        "DEFAULT_EMBEDDING_MODEL_KEY": "openai/text-embedding-3-small"
      }
    }
  }
}

Claude Code Configuration

For HTTP-based transports, you can add the server to Claude Code:

# Start the server with streamable-http transport
TRANSPORT=streamable-http PORT=8000 uv run python -m main

# Add to Claude Code
claude mcp add --transport http perplexica http://localhost:8000/mcp

Available Tools

search

Perform a web search using Perplexica.

Parameters:

Parameter Type Required Description
query string Yes The search query
focus_mode string No Search focus: webSearch, academicSearch, writingAssistant, wolframAlphaSearch, youtubeSearch, redditSearch
optimization_mode string No Optimization: speed, balanced, quality
system_instructions string No Custom instructions for AI response
chat_model_provider_id string No Override default chat model provider
chat_model_key string No Override default chat model
embedding_model_provider_id string No Override default embedding provider
embedding_model_key string No Override default embedding model

Example:

Search for "latest developments in AI" using academic focus

Development

Install dev dependencies

uv sync --dev

Run tests

uv run pytest

Run linter

uv run ruff check .
uv run ruff format .
uv run black src/

Architecture

This project follows hexagonal architecture:

src/
├── main.py              # MCP server entry point
├── config.py            # Pydantic Settings
├── dependencies.py      # Dependency injection
├── domain/              # Business core (pure Python)
│   ├── entities.py      # Dataclasses
│   └── ports.py         # ABC interfaces
├── application/         # Use cases
│   ├── requests.py      # Pydantic DTOs
│   └── use_cases.py     # Business logic
└── infrastructure/      # External adapters
    └── perplexica/
        └── adapter.py   # HTTP client

License

MIT

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选