
MCP Perplexity Server
Provides AI-powered search, research, and reasoning capabilities through integration with Perplexity.ai, offering three specialized tools: general conversational AI, deep research with citations, and advanced reasoning.
README
MCP Perplexity Server
MCP server for Perplexity.ai that provides AI-powered search, research, and reasoning capabilities.
🚀 Features
- Perplexity AI Integration: Three specialized tools for different use cases
perplexity_ask
: General conversational AI using sonar-pro modelperplexity_research
: Deep research with citations using sonar-deep-research modelperplexity_reason
: Advanced reasoning using sonar-reasoning-pro model
- TypeScript: Full type safety with modern TypeScript patterns
- HTTP Transport: RESTful API with Express.js server
- Session Management: Stateful connections with proper session handling
- Configuration Management: Environment-based configuration with validation
- Error Handling: Comprehensive error handling and logging
- Health Checks: Built-in health monitoring endpoints
- Docker Support: Production-ready containerization
- Development Tools: ESLint, Prettier, and testing setup
- Production Ready: Optimized for scalability and security
📋 Prerequisites
- Node.js 20+
- npm or yarn
- Docker (optional, for containerization)
🛠️ Quick Start
Option 1: Use the Project Generator (Recommended)
# Clone the template
git clone <your-repo-url>
cd mcp-perplexity
# Create a new project using the generator
./create-mcp-project your-project-name --description "Your project description" --author "Your Name"
# Or use the Node.js script directly
node setup-new-project.js your-project-name --description "Your project description" --author "Your Name"
Generator Options:
--description <desc>
: Project description--author <name>
: Author name--target-dir <dir>
: Target directory (default: mcp-<project-name>)--install-deps
: Install npm dependencies automatically--no-git
: Skip git repository initialization
Option 2: Manual Setup
# Clone the template
git clone <your-repo-url>
cd mcp-template
# Install dependencies
npm install
# Copy environment configuration
cp .env.example .env # Create this file with your settings
2. Environment Configuration
Create a .env
file in the root directory:
# Server Configuration
PORT=3000
LOG_LEVEL=info
# Perplexity API Configuration
PERPLEXITY_API_KEY=your_perplexity_api_key_here
3. Development
# Start development server with hot reload
npm run dev
# Build for production
npm run build
# Start production server
npm start
# Run tests
npm test
# Lint and format code
npm run lint
npm run lint:fix
🏗️ Project Structure
mcp-perplexity/
├── src/
│ ├── config/ # Configuration management
│ │ └── index.ts # Main config file
│ ├── services/ # Service layer
│ │ └── perplexity.ts # Perplexity API service
│ ├── utils/ # Utility functions
│ └── index.ts # Main server application
├── create-mcp-project # Bash script for project generation
├── setup-new-project.js # Node.js project generator
├── Dockerfile # Docker configuration
├── package.json # Dependencies and scripts
├── tsconfig.json # TypeScript configuration
└── README.md # This file
🔧 Project Generator
This template includes powerful project generation tools to quickly create new MCP servers:
Features:
- Automatic Name Conversion: Converts kebab-case names to all required formats (camelCase, PascalCase, etc.)
- File Templating: Updates all files with the new project name and details
- Git Integration: Optionally initializes a new git repository
- Dependency Management: Can automatically install npm dependencies
- Smart Copy Logic: Excludes development files and prevents infinite recursion
Usage Examples:
# Basic usage
./create-mcp-project weather-service
# With full options
./create-mcp-project task-manager \
--description "AI-powered task management MCP server" \
--author "Your Name" \
--install-deps
# Custom target directory
./create-mcp-project file-processor --target-dir ./my-custom-server
# Skip git initialization
./create-mcp-project data-analyzer --no-git
🔧 Architecture
Core Components
- McpServerApp: Main application class that orchestrates the MCP server
- Configuration: Environment-based configuration with type safety
- Session Management: HTTP-based stateful sessions with cleanup
- Transport Layer: StreamableHTTPServerTransport for MCP communication
- Error Handling: Comprehensive error handling with proper HTTP responses
HTTP Endpoints
GET /health
- Health check endpointPOST /mcp
- Main MCP communication endpointGET /mcp
- Server-to-client notifications via SSEDELETE /mcp
- Session termination
🛠️ Customization Guide
Using Perplexity Tools
The server provides three Perplexity AI tools:
1. perplexity_ask
General conversational AI using the sonar-pro model.
{
"name": "perplexity_ask",
"arguments": {
"messages": [
{
"role": "user",
"content": "What are the latest developments in AI?"
}
]
}
}
2. perplexity_research
Deep research with citations using the sonar-deep-research model.
{
"name": "perplexity_research",
"arguments": {
"messages": [
{
"role": "user",
"content": "Research the current state of quantum computing and its applications"
}
]
}
}
3. perplexity_reason
Advanced reasoning using the sonar-reasoning-pro model.
{
"name": "perplexity_reason",
"arguments": {
"messages": [
{
"role": "user",
"content": "Analyze the pros and cons of different renewable energy sources"
}
]
}
}
Adding New Tools
To add a new MCP tool, modify the createServer()
method in src/index.ts
:
// Register your custom tool
server.tool(
'your-tool-name',
'Description of your tool',
{
// Define input schema using Zod
parameter1: z.string().describe('Parameter description'),
parameter2: z.number().optional().describe('Optional parameter'),
},
async ({ parameter1, parameter2 }) => {
try {
// Your tool implementation here
const result = await yourCustomLogic(parameter1, parameter2);
return {
content: [
{
type: 'text',
text: JSON.stringify(result, null, 2),
} as TextContent,
],
};
} catch (error) {
const errorMessage =
error instanceof Error ? error.message : String(error);
throw new Error(`Error in your-tool-name: ${errorMessage}`);
}
}
);
Configuration Management
Add new configuration options in src/config/index.ts
:
interface Config {
logging: LoggingConfig;
server: ServerConfig;
// Add your custom config sections
database: {
url: string;
timeout: number;
};
external: {
apiKey: string;
baseUrl: string;
};
}
const config: Config = {
// ... existing config
database: {
url: process.env.DATABASE_URL || 'sqlite://memory',
timeout: parseInt(process.env.DB_TIMEOUT || '5000', 10),
},
external: {
apiKey: process.env.EXTERNAL_API_KEY || '',
baseUrl: process.env.EXTERNAL_BASE_URL || 'https://api.example.com',
},
};
Adding Middleware
Add Express middleware in the run()
method:
async run() {
const app = express();
app.use(express.json());
// Add your custom middleware
app.use(cors()); // CORS support
app.use(helmet()); // Security headers
app.use(morgan('combined')); // Request logging
// ... rest of the setup
}
🐳 Docker Deployment
Build and Run
# Build Docker image
docker build -t mcp-perplexity-server .
# Run container
docker run -p 3000:3000 --env-file .env mcp-perplexity-server
Docker Compose (Recommended)
Create a docker-compose.yml
:
version: '3.8'
services:
mcp-server:
build: .
ports:
- '3000:3000'
environment:
- NODE_ENV=production
- PORT=3000
- LOG_LEVEL=info
restart: unless-stopped
healthcheck:
test: ['CMD', 'curl', '-f', 'http://localhost:3000/health']
interval: 30s
timeout: 10s
retries: 3
Run with:
docker-compose up -d
🔒 Security Best Practices
This template implements several security measures:
- Input Validation: Zod schema validation for all tool parameters
- Error Handling: Safe error responses without information leakage
- Session Management: Proper session cleanup and validation
- HTTP Security: Ready for security headers and CORS configuration
- Environment Variables: Secure configuration management
Recommended Additional Security
// Add security middleware
import helmet from 'helmet';
import cors from 'cors';
import rateLimit from 'express-rate-limit';
app.use(helmet());
app.use(
cors({
origin: process.env.ALLOWED_ORIGINS?.split(',') || false,
})
);
const limiter = rateLimit({
windowMs: 15 * 60 * 1000, // 15 minutes
max: 100, // Limit each IP to 100 requests per windowMs
});
app.use('/mcp', limiter);
📊 Monitoring and Logging
The template includes basic logging setup. For production, consider adding:
- Structured Logging: Winston with JSON format
- Metrics Collection: Prometheus metrics
- Health Checks: Comprehensive health endpoints
- APM Integration: Application Performance Monitoring
🧪 Testing
# Run all tests
npm test
# Run tests in watch mode
npm run test:watch
# Run tests with coverage
npm run test:coverage
Writing Tests
Create test files in src/**/*.test.ts
:
import { describe, test, expect } from '@jest/globals';
// Your test imports
describe('YourComponent', () => {
test('should handle valid input', async () => {
// Test implementation
});
});
🚀 Production Deployment
Environment Variables
NODE_ENV=production
PORT=3000
LOG_LEVEL=warn
# Add your production-specific variables
DATABASE_URL=postgresql://...
REDIS_URL=redis://...
API_KEYS=...
Performance Optimization
- Enable gzip compression
- Implement proper caching headers
- Use connection pooling for databases
- Monitor memory usage and implement limits
- Set up log rotation
Scaling Considerations
- Load balancing across multiple instances
- Database connection pooling
- Session store externalization (Redis)
- Horizontal pod autoscaling in Kubernetes
📚 References
- Model Context Protocol Documentation
- MCP SDK Documentation
- Express.js Documentation
- TypeScript Documentation
🤝 Contributing
- Fork the repository
- Create a feature branch
- Make your changes
- Add tests for new functionality
- Run the test suite
- Submit a pull request
📝 License
This project is licensed under the MIT License - see the LICENSE file for details.
🆘 Support
For questions and support:
- Check the MCP Documentation
- Review existing issues
- Create a new issue with detailed information
Happy coding! 🎉
推荐服务器

Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。