MCP Perplexity Server
A lightweight Python-based microservice that provides simple echo functionality, receiving messages and returning them back to the client for diagnostic and testing purposes within the MCP framework.
README
MCP Perplexity Server
Overview
The MCP Perplexity Server is a lightweight Python-based microservice designed to provide simple echo functionality. It receives messages and returns them back to the client, serving as a basic diagnostic and testing tool within the MCP framework.
Project Details
- Version: 0.1.0
- Python Compatibility: Python 3.11+
Features
- Message Echo: Returns any message sent to the server
- Comprehensive Validation: Robust input validation using Pydantic models
- Async Server Architecture: Built with asyncio for efficient performance
- Flexible Configuration: Configurable through environment variables and config files
Dependencies
Core dependencies:
- mcp (>=1.6.0)
- pydantic (>=2.11.2)
- PyYAML (>=6.0.2)
Development dependencies:
- pytest (>=8.3.5)
Installation
Prerequisites
- Python 3.11 or higher
- pip
- (Optional) Virtual environment recommended
Install from PyPI
pip install chuk-mcp-perplexity
Install from Source
- Clone the repository:
git clone <repository-url>
cd chuk-mcp-perplexity
- Create a virtual environment:
python -m venv venv
source venv/bin/activate # On Windows, use `venv\Scripts\activate`
- Install the package:
pip install . # Installs the package in editable mode
Development Installation
To set up for development:
pip install .[dev] # Installs package with development dependencies
Running the Server
Command-Line Interface
chuk-mcp-perplexity
Programmatic Usage
from chuk_mcp_perplexity.main import main
if __name__ == "__main__":
main()
Environment Variables
NO_BOOTSTRAP: Set to disable component bootstrapping- Other configuration options can be set in the configuration files
Available Tools
Echo
Input:
message: The string message to echo back
Example:
echo("Hello, world!")
Returns:
- The original message in an EchoResult object
Development
Code Formatting
- Black is used for code formatting
- isort is used for import sorting
- Line length is set to 88 characters
Running Tests
pytest
Contributing
- Fork the repository
- Create your feature branch (
git checkout -b feature/AmazingFeature) - Ensure code passes formatting and testing
- Commit your changes (
git commit -m 'Add some AmazingFeature') - Push to the branch (
git push origin feature/AmazingFeature) - Open a Pull Request
License
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。