MCP Pickaxe Server

MCP Pickaxe Server

Connects AI assistants to the Pickaxe platform for managing AI agents, knowledge bases, users, and analytics through natural language, including chat history analysis, document management, and multi-studio operations.

Category
访问服务器

README

MCP Pickaxe Server

npm version License: MIT MCP

An MCP (Model Context Protocol) server that connects AI assistants like Claude to the Pickaxe platform. Manage your AI agents, knowledge bases, users, and analytics directly through natural language.

Why Use This?

If you're building AI agents on Pickaxe, this MCP server lets you:

  • Analyze agent conversations - Review chat history to identify knowledge gaps and improve agent performance
  • Manage knowledge bases - Create, update, and connect documents to your agents without leaving your AI workflow
  • Handle user management - Create users, manage access, send invitations, and track usage
  • Work across multiple studios - Seamlessly switch between different Pickaxe studios in a single session
  • Automate workflows - Let Claude handle repetitive Pickaxe admin tasks

Features

Category Tools
Studios List configured studios, switch between them
Chat History Fetch and analyze agent conversation logs
Documents Create, list, get, delete, connect/disconnect to agents
Users Create, list, get, update, delete, invite
Products List available products and bundles
Memory List memory schemas, retrieve user memories

Prerequisites

  • Node.js 18+
  • A Pickaxe account with API access
  • Your Pickaxe Studio API key(s)

Installation

Option 1: Install from npm (recommended)

npx mcp-pickaxe

Or install globally:

npm install -g mcp-pickaxe

Option 2: Clone and Build

git clone https://github.com/aplaceforallmystuff/mcp-pickaxe.git
cd mcp-pickaxe
npm install
npm run build

Configuration

1. Get Your Pickaxe API Key

  1. Log in to Pickaxe Studio
  2. Navigate to Settings > API
  3. Copy your Studio API key (starts with studio-)

2. Configure Your MCP Client

For Claude Desktop

Add to your Claude Desktop config file:

macOS: ~/Library/Application Support/Claude/claude_desktop_config.json Windows: %APPDATA%\Claude\claude_desktop_config.json

{
  "mcpServers": {
    "pickaxe": {
      "command": "node",
      "args": ["/path/to/mcp-pickaxe/dist/index.js"],
      "env": {
        "PICKAXE_STUDIO_MAIN": "studio-your-api-key-here"
      }
    }
  }
}

For Claude Code

Add to ~/.claude.json:

{
  "mcpServers": {
    "pickaxe": {
      "command": "node",
      "args": ["/path/to/mcp-pickaxe/dist/index.js"],
      "env": {
        "PICKAXE_STUDIO_MAIN": "studio-your-api-key-here"
      }
    }
  }
}

Multi-Studio Configuration

To work with multiple Pickaxe studios, add multiple environment variables:

{
  "env": {
    "PICKAXE_STUDIO_PRODUCTION": "studio-xxx-xxx-xxx",
    "PICKAXE_STUDIO_STAGING": "studio-yyy-yyy-yyy",
    "PICKAXE_STUDIO_DEV": "studio-zzz-zzz-zzz",
    "PICKAXE_DEFAULT_STUDIO": "PRODUCTION"
  }
}

Then specify which studio to use in your requests:

  • If you set PICKAXE_DEFAULT_STUDIO, that studio is used when none is specified
  • If only one studio is configured, it's used automatically
  • Otherwise, pass studio="STAGING" (or similar) to any tool

Usage Examples

Once configured, you can interact with Pickaxe through natural language:

Analyze Agent Performance

"Show me the last 20 conversations from my support agent"

"What questions are users asking that my agent can't answer?"

Manage Knowledge Base

"Create a new document called 'FAQ' with this content: [your content]"

"Connect the FAQ document to my customer support agent"

"List all documents in my knowledge base"

User Management

"Show me all users and their usage stats"

"Create a new user with email user@example.com and give them access to the Pro product"

"Send invitations to these emails: [list of emails]"

Multi-Studio Operations

"List all users in my staging studio"

"Compare the documents between production and staging"

Available Tools

Studio Management

  • studios_list - List all configured studios and the current default

Chat History

  • chat_history - Fetch conversation history for an agent
    • Parameters: pickaxeId, skip, limit, format ("messages" or "raw"), studio

Document Management

  • doc_create - Create document from content or URL
  • doc_list - List all documents (with pagination)
  • doc_get - Get a specific document
  • doc_delete - Delete a document
  • doc_connect - Link document to an agent
  • doc_disconnect - Unlink document from an agent

User Management

  • user_list - List all users with access and usage info
  • user_get - Get a specific user by email
  • user_create - Create a new user
  • user_update - Update user details, products, or usage
  • user_delete - Delete a user
  • user_invite - Send email invitations

Products

  • products_list - List available products/bundles

Memory

  • memory_list - List memory schemas
  • memory_get_user - Get collected memories for a user

Development

# Run in development mode (auto-reloads)
npm run dev

# Build for production
npm run build

# Run the built version
npm start

Troubleshooting

"No Pickaxe studios configured"

Ensure you have at least one PICKAXE_STUDIO_* environment variable set in your MCP config.

"Studio not found"

Check that the studio name matches exactly (case-insensitive). Run studios_list to see available options.

"Pickaxe API error (401)"

Your API key is invalid or expired. Get a new one from Pickaxe Studio settings.

"Pickaxe API error (403)"

Your API key doesn't have permission for this operation. Check your Pickaxe account permissions.

Contributing

Contributions are welcome! Please see CONTRIBUTING.md for guidelines.

License

MIT License - see LICENSE for details.

Links

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选