mcp-plots

mcp-plots

A MCP server for data visualization. It exposes tools to render charts (line, bar, pie, scatter, heatmap, etc.) from data and returns plots as either image/text/mermaid diagram.

Category
访问服务器

README

<div align="center">

<h1>Plots MCP Server</h1>

PyPI Smithery Glama Python Versions License

<a href="https://glama.ai/mcp/servers/@MR901/mcp-plots"> <img width="285" height="150" src="https://glama.ai/mcp/servers/@MR901/mcp-plots/badge" /> </a>

</div>

<br> A Model Context Protocol (MCP) server for data visualization. It exposes tools to render charts (line, bar, pie, scatter, heatmap, etc.) from data and returns the plot as image/base64 text/mermaid diagram.

<!-- mcp-name: io.github.MR901/mcp-plots -->

Why MCP Plots?

  • Instant, visual-first charts using Mermaid (renders directly in MCP clients like Cursor)
  • Simple prompts to generate charts from plain data
  • Zero-setup options via uvx, or install from PyPI/Docker
  • Flexible output formats: mermaid (default), PNG image, or text

Quick Usage

  • Ask your MCP client: "Create a bar chart showing sales: A=100, B=150, C=80"
  • Default output is Mermaid, so diagrams render instantly in Cursor

Quick Start

PyPI Installation (Recommended)

pip install mcp-plots
mcp-plots  # Start the server

For Cursor Users

  1. Install the package: pip install mcp-plots
  2. Add to your Cursor MCP config (~/.cursor/mcp.json):
    {
      "mcpServers": {
        "plots": {
          "command": "mcp-plots",
          "args": ["--transport", "stdio"]
        }
      }
    }
    
    Alternative (zero-install via uvx + PyPI):
    {
      "mcpServers": {
        "plots": {
          "command": "uvx",
          "args": ["mcp-plots", "--transport", "stdio"]
        }
      }
    }
    
  3. Restart Cursor
  4. Ask: "Create a bar chart showing sales: A=100, B=150, C=80"

Development Installation

uvx --from git+https://github.com/mr901/mcp-plots.git run-server.py

Documentation → | Quick Start → | API Reference →

MCP Registry

This server is published under the MCP registry identifier io.github.MR901/mcp-plots. You can discover/verify it via the official registry API:

curl "https://registry.modelcontextprotocol.io/v0/servers?search=io.github.MR901/mcp-plots"

Registry metadata for this project is tracked in server.json.

Install with Smithery

This repository includes a smithery.yaml for easy setup with Smithery.

  • File: smithery.yaml
  • Docs: https://smithery.ai/docs/config#smitheryyaml

Example install using the Smithery CLI (adjust --client as needed, e.g. cursor, claude):

npx -y @smithery/cli install \
  https://raw.githubusercontent.com/mr901/mcp-plots/main/smithery.yaml \
  --client cursor

After installation, your MCP client should be able to start the server over stdio using the command defined in smithery.yaml.

Project layout

src/
  app/                # Server construction and runtime
    server.py
  capabilities/       # MCP tools and prompts
    tools.py
    prompts.py
  visualization/      # Plotting engines and configurations
    chart_config.py
    generator.py

Requirements

  • Python 3.10+
  • See requirements.txt

Setup Routes

uvx (Recommended)

The easiest way to run the MCP server without managing Python environments:

# Run directly with uvx (no installation needed)
uvx --from git+https://github.com/mr901/mcp-plots.git run-server.py

# Or install and run the command
uvx --from git+https://github.com/mr901/mcp-plots.git mcp-plots

# With custom options
uvx --from git+https://github.com/mr901/mcp-plots.git mcp-plots --port 8080 --log-level DEBUG

Why uvx?

  • No Environment Management: Automatically handles Python dependencies
  • Isolated Execution: Runs in its own virtual environment
  • Always Latest: Pulls fresh code from repository
  • Zero Setup: Works immediately without pip install
  • Cross-Platform: Same command works on Windows, macOS, Linux

PyPI (Traditional Installation)

  1. Install dependencies
pip install -r requirements.txt
  1. Run the server (HTTP transport, default port 8000)
python -m src --transport streamable-http --host 0.0.0.0 --port 8000 --log-level INFO
  1. Run with stdio (for MCP clients that spawn processes)
python -m src --transport stdio

Local Development (from source)

git clone https://github.com/mr901/mcp-plots.git
cd mcp-plots
pip install -e .
python -m src --transport stdio --log-level DEBUG

Docker

docker build -t mcp-plots .
docker run -p 8000:8000 mcp-plots

Environment variables (optional):

  • MCP_TRANSPORT (streamable-http|stdio)
  • MCP_HOST (default 0.0.0.0)
  • MCP_PORT (default 8000)
  • LOG_LEVEL (default INFO)

Tools

  • list_chart_types() → returns available chart types
  • list_themes() → returns available themes
  • suggest_fields(sample_rows) → suggests field roles based on data samples
  • render_chart(chart_type, data, field_map, config_overrides?, options?, output_format?) → returns MCP content
  • generate_test_image() → generates a test image (red circle) to verify MCP image support

Cursor Integration

This MCP server is fully compatible with Cursor's image support! When you use the render_chart tool:

  • Charts appear directly in chat - No need to save files or open separate windows
  • AI can analyze your charts - Vision-enabled models can discuss and interpret your visualizations
  • Perfect MCP format - Uses the exact base64 PNG format that Cursor expects

The server returns images in the MCP format Cursor requires:

{
  "content": [
    {
      "type": "image", 
      "data": "<base64-encoded-png>",
      "mimeType": "image/png"
    }
  ]
}

Example call (pseudo):

render_chart(
  chart_type="bar",
  data=[{"category":"A","value":10},{"category":"B","value":20}],
  field_map={"category_field":"category","value_field":"value"},
  config_overrides={"title":"Example Bar","width":800,"height":600,"output_format":"MCP_IMAGE"}
)

Return shape (PNG):

{
  "status": "success",
  "content": [{"type":"image","data":"<base64>","mimeType":"image/png"}]
}

Configuration

The server can be configured via environment variables or command line arguments:

Server Settings

  • MCP_TRANSPORT - Transport type: streamable-http or stdio (default: streamable-http)
  • MCP_HOST - Host address (default: 0.0.0.0)
  • MCP_PORT - Port number (default: 8000)
  • LOG_LEVEL - Logging level: DEBUG, INFO, WARNING, ERROR, CRITICAL (default: INFO)
  • MCP_DEBUG - Enable debug mode: true or false (default: false)

Chart Settings

  • CHART_DEFAULT_WIDTH - Default chart width in pixels (default: 800)
  • CHART_DEFAULT_HEIGHT - Default chart height in pixels (default: 600)
  • CHART_DEFAULT_DPI - Default chart DPI (default: 100)
  • CHART_MAX_DATA_POINTS - Maximum data points per chart (default: 10000)

Command Line Usage

With uvx (recommended):

uvx --from git+https://github.com/mr901/mcp-plots.git mcp-plots --help

# Examples:
uvx --from git+https://github.com/mr901/mcp-plots.git mcp-plots --port 8080 --log-level DEBUG
uvx --from git+https://github.com/mr901/mcp-plots.git mcp-plots --chart-width 1200 --chart-height 800

Traditional Python:

python -m src --help

# Examples:
python -m src --transport streamable-http --host 0.0.0.0 --port 8000
python -m src --log-level DEBUG --chart-width 1200 --chart-height 800

Docker

Build image:

docker build -t mcp-plots .

Run container with custom configuration:

docker run --rm -p 8000:8000 \
  -e MCP_TRANSPORT=streamable-http \
  -e MCP_HOST=0.0.0.0 \
  -e MCP_PORT=8000 \
  -e LOG_LEVEL=INFO \
  -e CHART_DEFAULT_WIDTH=1000 \
  -e CHART_DEFAULT_HEIGHT=700 \
  -e CHART_DEFAULT_DPI=150 \
  -e CHART_MAX_DATA_POINTS=5000 \
  mcp-plots

Cursor MCP Integration

Quick Setup for Cursor

The Plots MCP Server is designed to work seamlessly with Cursor's MCP support. Here's how to integrate it:

1. Add to Cursor's MCP Configuration

Add this to your Cursor MCP configuration file (~/.cursor/mcp.json or similar):

{
  "mcpServers": {
    "plots": {
      "command": "uvx",
      "args": [
        "--from", 
        "git+https://github.com/mr901/mcp-plots.git@main",
        "mcp-plots",
        "--transport", 
        "stdio"
      ],
      "env": {
        "LOG_LEVEL": "INFO",
        "CHART_DEFAULT_WIDTH": "800",
        "CHART_DEFAULT_HEIGHT": "600"
      }
    }
  }
}

2. Alternative: HTTP Transport

For HTTP-based integration:

{
  "mcpServers": {
    "plots-http": {
      "command": "uvx",
      "args": [
        "--from", 
        "git+https://github.com/mr901/mcp-plots.git@main", 
        "mcp-plots",
        "--transport", 
        "streamable-http",
        "--host", 
        "127.0.0.1",
        "--port", 
        "8000"
      ]
    }
  }
}

3. Local Development Setup

For local development (if you have the code cloned):

{
  "mcpServers": {
    "plots-dev": {
      "command": "python",
      "args": ["-m", "src", "--transport", "stdio"],
      "cwd": "/path/to/mcp-plots",
      "env": {
        "LOG_LEVEL": "DEBUG"
      }
    }
  }
}

4. Verify Integration

After adding the configuration:

  1. Restart Cursor
  2. Check MCP connection in Cursor's MCP panel
  3. Test with a simple chart:
    Create a bar chart showing sales data: A=100, B=150, C=80
    

MERMAID-First Approach

This server prioritizes MERMAID output by default because:

  • Renders instantly in Cursor - No external viewers needed
  • Interactive - Cursor can analyze and discuss the diagrams
  • Lightweight - Fast generation and display
  • Scalable - Vector-based, works at any zoom level

Chart Types with Native MERMAID Support:

  • line, bar, pie, areaxychart-beta format
  • histogramxychart-beta with automatic binning
  • funnel → Styled flowchart with color gradients
  • gauge → Flowchart with color-coded value indicators
  • sankey → Flow diagrams with source/target styling

Available Tools

render_chart

Main chart generation tool with MERMAID-first approach.

Parameters:

  • chart_type - Chart type (line, bar, pie, scatter, heatmap, etc.)
  • data - List of data objects
  • field_map - Field mappings (x_field, y_field, category_field, etc.)
  • config_overrides - Chart configuration overrides
  • output_format - Output format (mermaid [default], mcp_image, mcp_text)

Special Modes:

  • chart_type="help" - Show available chart types and themes
  • chart_type="suggest" - Analyze data and suggest field mappings

configure_preferences

Interactive configuration tool for setting user preferences.

Parameters:

  • output_format - Default output format (mermaid, mcp_image, mcp_text)
  • theme - Default theme (default, dark, seaborn, minimal)
  • chart_width - Default chart width in pixels
  • chart_height - Default chart height in pixels
  • reset_to_defaults - Reset all preferences to system defaults

Features:

  • Persistent Settings - Saved to ~/.plots_mcp_config.json
  • Live Preview - Shows sample chart with current settings
  • Override Support - Use config_overrides for one-off changes

Documentation

Additional Resources

Chart Examples

Basic Bar Chart:

{
  "chart_type": "bar",
  "data": [
    {"category": "Sales", "value": 120},
    {"category": "Marketing", "value": 80},
    {"category": "Support", "value": 60}
  ],
  "field_map": {
    "category_field": "category", 
    "value_field": "value"
  }
}

Time Series Line Chart:

{
  "chart_type": "line",
  "data": [
    {"date": "2024-01", "revenue": 1000},
    {"date": "2024-02", "revenue": 1200},
    {"date": "2024-03", "revenue": 1100}
  ],
  "field_map": {
    "x_field": "date",
    "y_field": "revenue"
  }
}

Funnel Chart:

{
  "chart_type": "funnel",
  "data": [
    {"stage": "Awareness", "value": 1000},
    {"stage": "Interest", "value": 500}, 
    {"stage": "Purchase", "value": 100}
  ],
  "field_map": {
    "category_field": "stage",
    "value_field": "value"
  }
}

🔧 Configuration

Environment Variables

  • MCP_TRANSPORT - Transport type (streamable-http | stdio)
  • MCP_HOST - Host address (default: 0.0.0.0)
  • MCP_PORT - Port number (default: 8000)
  • LOG_LEVEL - Logging level (default: INFO)
  • MCP_DEBUG - Enable debug mode (true | false)
  • CHART_DEFAULT_WIDTH - Default chart width in pixels (default: 800)
  • CHART_DEFAULT_HEIGHT - Default chart height in pixels (default: 600)
  • CHART_DEFAULT_DPI - Default chart DPI (default: 100)
  • CHART_MAX_DATA_POINTS - Maximum data points per chart (default: 10000)

User Preferences

Personal preferences are stored in ~/.plots_mcp_config.json:

{
  "defaults": {
    "output_format": "mermaid",
    "theme": "default",
    "chart_width": 800,
    "chart_height": 600
  },
  "user_preferences": {
    "output_format": "mcp_image",
    "theme": "dark"
  }
}

🚀 Advanced Usage

Custom Themes

Available themes: default, dark, seaborn, minimal, whitegrid, darkgrid, ticks

High-Resolution Charts

uvx --from git+https://github.com/mr901/mcp-plots.git mcp-plots \
  --chart-width 1920 \
  --chart-height 1080 \
  --chart-dpi 300

Performance Optimization

  • Use max_data_points to limit large datasets
  • MERMAID output is fastest for quick visualization
  • PNG output for high-quality static images
  • SVG output for scalable vector graphics

🐛 Troubleshooting

Common Issues

Issue: Charts not rendering in Cursor

  • Solution: Ensure output_format="mermaid" (default)
  • Check: MCP server connection in Cursor

Issue: uvx command not found

  • Solution: Install uv: curl -LsSf https://astral.sh/uv/install.sh | sh

Issue: Port already in use

  • Solution: Use different port: --port 8001

Issue: Large datasets slow

  • Solution: Sample data or increase --max-data-points

Debug Mode

uvx --from git+https://github.com/mr901/mcp-plots.git mcp-plots \
  --debug \
  --log-level DEBUG

📝 Notes

  • Matplotlib runs headless (Agg backend) in the container
  • For large datasets, sample your data for responsiveness
  • Chart defaults can be overridden per-request via config_overrides
  • MERMAID charts render instantly in Cursor for the best user experience
  • User preferences persist across sessions and apply to all charts by default

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选