MCP Product Development Lifecycle Server

MCP Product Development Lifecycle Server

Enables AI agents to track and manage product development projects through structured 7-phase lifecycles with sprint tracking, role-based collaboration, and multi-project support. Provides phase management, progress tracking, and team coordination tools for complete product development workflows.

Category
访问服务器

README

MCP Product Development Lifecycle (PDL) Server

Overview

The MCP PDL Server is a Model Context Protocol server that enables AI agents to track, manage, and collaborate on product development projects through their complete lifecycle. It provides structured phase management, sprint tracking, and role-based agent profiles to facilitate intelligent project coordination.

Core Concepts

Product Development Lifecycle (PDL) Phases

The server manages 7 distinct phases of product development:

  1. Discovery & Ideation - Problem validation and idea generation
  2. Definition & Scoping - Requirements and planning
  3. Design & Prototyping - UX/UI design and testing
  4. Development & Implementation - Code construction
  5. Testing & Quality Assurance - Quality verification
  6. Launch & Deployment - Release management
  7. Post-Launch: Growth & Iteration - Performance monitoring and improvement

Multi-Project Support

  • Projects are identified by unique project names (keys)
  • Each project maintains independent phase states and sprint data
  • Concurrent project tracking with isolated data contexts

Role-Based Agent Profiles

Each role has specific responsibilities and phase involvement:

  • Product Manager - Vision, strategy, and coordination
  • Product Designer - User experience and interface design
  • Engineering Manager - Technical leadership and resource management
  • Software Engineers - Implementation and technical execution (must know to follow best coding practices)
  • QA Engineers - Quality assurance and testing
  • Marketing Manager - Go-to-market strategy and positioning
  • Sales & Support - Customer feedback and frontline insights

Agent Format

---
name: {name}
description: {when to use this agent}
tools: {tools}
model: model [sonnet | opus]
color: {color}
---

## Primary Responsibility
{description}

## Phase Leadership
{map of primary driver | key support | consultative}

## Key Responsibilitis by Phase

## Collaboration Matrix

## Success Metrics

## DOs
{important considerations to adhere to}

## DONTs
{anti-patterns we want to avoid}

MCP Server Specification

Server Name

mcp_pdl

Core Functions

1. get_phase

Retrieves the current phase information for a project.

Parameters:

  • project_name (string, required): Unique project identifier
  • include_sprints (boolean, optional): Include sprint details in response

Returns:

{
  "project_name": "string",
  "current_phase": {
    "phase_number": "integer (1-7)",
    "phase_name": "string",
    "status": "not_started | in_progress | completed | blocked",
    "start_date": "ISO 8601 datetime",
    "end_date": "ISO 8601 datetime or null",
    "primary_driver": "role name",
    "completion_percentage": "integer (0-100)"
  },
  "sprints": [] // if include_sprints is true
}

2. update_phase

Updates phase status and details for a project.

Parameters:

  • project_name (string, required): Unique project identifier
  • phase_number (integer, optional): Phase to update (1-7), defaults to current
  • status (string, optional): "not_started" | "in_progress" | "completed" | "blocked"
  • completion_percentage (integer, optional): 0-100
  • notes (string, optional): Update notes or blockers
  • transition_to_next (boolean, optional): Auto-transition to next phase if current is completed

Returns:

{
  "success": "boolean",
  "project_name": "string",
  "updated_phase": {
    "phase_number": "integer",
    "phase_name": "string",
    "status": "string",
    "completion_percentage": "integer"
  },
  "message": "string"
}

3. track_progress

Records and retrieves progress updates for sprints within phases.

Parameters:

  • project_name (string, required): Unique project identifier
  • action (string, required): "create_sprint" | "update_sprint" | "get_sprints" | "get_timeline"
  • sprint_data (object, conditional): Required for create/update actions
    • sprint_name (string): Sprint identifier
    • phase_number (integer): Associated phase (1-7)
    • tasks (array): Task list with status
    • velocity (integer): Story points or task completion rate
    • blockers (array): Current impediments

Returns:

{
  "success": "boolean",
  "project_name": "string",
  "action": "string",
  "data": {} // Varies by action type
}

4. initialize_project

Creates a new project with PDL phase structure.

Parameters:

  • project_name (string, required): Unique project identifier
  • description (string, optional): Project description
  • team_composition (object, optional): Role assignments
  • start_phase (integer, optional): Starting phase (default: 1)

Returns:

{
  "success": "boolean",
  "project_name": "string",
  "phases_initialized": "array of phase objects",
  "message": "string"
}

Data Storage Structure

Project Schema

{
  "project_name": "string (unique key)",
  "description": "string",
  "created_at": "ISO 8601 datetime",
  "updated_at": "ISO 8601 datetime",
  "team_composition": {
    "product_manager": "string or array",
    "product_designer": "string or array",
    "engineering_manager": "string",
    "engineers": "array",
    "qa_engineers": "array",
    "marketing_manager": "string",
    "sales_support": "array"
  },
  "phases": {
    "1": { /* phase object */ },
    "2": { /* phase object */ },
    // ... through 7
  },
  "sprints": [
    { /* sprint objects */ }
  ],
  "activity_log": [
    { /* timestamped events */ }
  ]
}

Phase Schema

{
  "phase_number": "integer (1-7)",
  "phase_name": "string",
  "status": "not_started | in_progress | completed | blocked",
  "start_date": "ISO 8601 datetime or null",
  "end_date": "ISO 8601 datetime or null",
  "primary_driver": "role name",
  "completion_percentage": "integer (0-100)",
  "key_activities": "array",
  "deliverables": "array",
  "blockers": "array",
  "notes": "string"
}

Sprint Schema

{
  "sprint_id": "string (unique)",
  "sprint_name": "string",
  "project_name": "string",
  "phase_number": "integer",
  "start_date": "ISO 8601 datetime",
  "end_date": "ISO 8601 datetime",
  "status": "planning | active | completed | cancelled",
  "tasks": [
    {
      "task_id": "string",
      "description": "string",
      "assignee": "string",
      "status": "todo | in_progress | done | blocked",
      "story_points": "integer"
    }
  ],
  "velocity": "integer",
  "burn_down": "array of daily progress",
  "retrospective": "string"
}

Web UI Specification

Dashboard View

  • Project List: Grid/table showing all active projects
    • Project name, current phase, progress bar, last updated
    • Quick status indicators (on-track, at-risk, blocked)
    • Click to drill into project details

Project Detail View

  • Phase Timeline: Visual representation of 7 phases
    • Current phase highlighted
    • Progress indicators for each phase
    • Phase transition history
  • Sprint Board: Current and recent sprints
    • Sprint velocity charts
    • Task completion status
    • Blocker alerts
  • Activity Log: Chronological updates
    • Phase transitions
    • Major milestones
    • Team updates

Progress Tracking View

  • Burn-down Charts: Sprint and phase level
  • Velocity Trends: Historical sprint velocity
  • Phase Completion Matrix: Cross-project phase status
  • Team Utilization: Role involvement across projects

Interaction Features

  • Quick Actions:
    • Update phase status
    • Create new sprint
    • Log blocker
    • Transition to next phase
  • Filters:
    • By project status
    • By phase
    • By role involvement
    • By date range
  • Export Options:
    • Project reports (PDF/CSV)
    • Timeline visualizations
    • Progress metrics

Implementation Requirements

Technology Stack

  • Server: Node.js/TypeScript MCP server
  • Storage: SQLite for persistence (or JSON file storage for simplicity)
  • UI Framework: React/Next.js for web interface
  • Visualization: Chart.js or D3.js for progress charts
  • API: RESTful endpoints for UI communication

File Structure

mcp-pdl/
├── src/
│   ├── server.ts           # Main MCP server
│   ├── handlers/           # Function handlers
│   ├── models/            # Data models
│   ├── storage/           # Database/file operations
│   └── agent-profiles/    # Role profile definitions
├── ui/
│   ├── pages/             # Next.js pages
│   ├── components/        # React components
│   ├── api/              # API routes
│   └── styles/           # CSS/styling
├── CLAUDE.md             # Agent usage instructions
├── package.json
├── tsconfig.json
└── README.md

Usage Instructions for Claude Code

  1. Initialize the MCP server structure with TypeScript support
  2. Create agent profiles in .claude/agents/ directory for all 7 roles based on the provided templates
  3. Implement core functions following the MCP protocol specification
  4. Set up data persistence using SQLite or JSON file storage
  5. Build the web UI with project dashboard and progress tracking
  6. Create the .claude/CLAUDE.md file with detailed instructions for AI agents on how to:
    • Initialize projects
    • Track phase progression
    • Manage sprints
    • Collaborate based on role profiles
    • Interpret progress metrics
    • Handle phase transitions
    • Resolve blockers

CLAUDE.md Specification

The .claude/CLAUDE.md file must serve as the primary instruction set that all agents inherit. It should include:

MCP Protocol Interface Instructions

  • How to call each mcp__pdl__ function with proper syntax
  • When to use each function in the context of PDL phases
  • Error handling and retry logic for failed calls
  • Required parameters vs optional parameters for each function

Documentation Standards

  • Template for project documentation updates
  • Required fields for activity logs
  • Format for recording blockers and resolutions
  • Sprint retrospective documentation format
  • Phase transition documentation requirements

Behavioral Guidelines

  • Conciseness: Communicate efficiently without sacrificing clarity
  • Accuracy: Never report false completions or fabricate data
  • Verification: Always check actual status before reporting
  • Documentation: Log all significant actions and decisions
  • Collaboration: Reference other agents' profiles when coordinating

Project CLAUDE.md Updates

Each project should maintain its own CLAUDE.md log containing:

  • Important documents and their locations
  • Key decisions and rationale
  • Milestone achievements
  • Blocker resolutions
  • Team changes or role reassignments
  • Lessons learned per phase

Success Criteria

  • [ ] Multi-project support with isolated contexts
  • [ ] Full CRUD operations for phases and sprints
  • [ ] Role-based agent profiles accessible via MCP
  • [ ] Persistent storage of project state
  • [ ] Web UI for visual progress tracking
  • [ ] Comprehensive activity logging
  • [ ] Phase transition automation
  • [ ] Sprint velocity tracking
  • [ ] Blocker management system
  • [ ] Export capabilities for reporting

Extension Possibilities

  • Integration with external project management tools (Jira, Asana)
  • Automated phase transition recommendations
  • AI-powered blocker resolution suggestions
  • Team performance analytics
  • Resource allocation optimization
  • Risk assessment based on phase progress
  • Stakeholder notification system
  • Template library for common project types

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选