MCP Proxy
Enables dynamic loading, hot-reloading, and orchestration of MCP servers without restarting Claude Code, allowing programmatic tool calling and workflow automation across multiple servers.
README
MCP Proxy - Dynamic MCP Server Loading
Hot-reload MCP servers without restarting Claude Code.
One-Click Install
Cursor
VS Code
Claude Code
# Clone the repo first
git clone https://github.com/lizTheDeveloper/mcp_proxy.git
cd mcp_proxy
pip install -r requirements.txt
# Then add to Claude Code (run from parent directory of mcp_proxy)
claude mcp add mcp-proxy -- python -m mcp_proxy.servers.proxy_server
<details> <summary><strong>Manual Installation</strong></summary>
Step 1: Clone the repository
git clone https://github.com/lizTheDeveloper/mcp_proxy.git
pip install -r mcp_proxy/requirements.txt
Step 2: Add to your MCP config
Claude Code (~/.claude.json or project .mcp.json):
{
"mcpServers": {
"mcp-proxy": {
"command": "python",
"args": ["-m", "mcp_proxy.servers.proxy_server"],
"cwd": "/path/to/mcp_proxy",
"env": {
"PYTHONPATH": "/path/to/parent/of/mcp_proxy"
}
}
}
}
Cursor (~/.cursor/mcp.json):
{
"mcpServers": {
"mcp-proxy": {
"command": "python",
"args": ["-m", "mcp_proxy.servers.proxy_server"],
"cwd": "/path/to/mcp_proxy",
"env": {
"PYTHONPATH": "/path/to/parent/of/mcp_proxy"
}
}
}
}
Note: Replace /path/to/parent/of/mcp_proxy with the actual parent directory. For example, if you cloned to /Users/me/src/mcp_proxy, use /Users/me/src.
</details>
Features
- Hot-Reload: Load and reload MCP servers without restart
- Dynamic Installation: Install servers from git repositories
- Programmatic Orchestration: Call tools dynamically in loops and workflows
- Context Savings: Load only the tools you need
Quick Start
1. Install
git clone https://github.com/lizTheDeveloper/mcp_proxy.git
cd mcp_proxy
pip install -r requirements.txt
2. Configure
Add to your project's .mcp.json:
{
"mcpServers": {
"mcp-proxy": {
"command": "python",
"args": ["-m", "mcp_proxy.servers.proxy_server"],
"cwd": "/path/to/mcp_proxy",
"env": {
"PYTHONPATH": "/path/to/parent/of/mcp_proxy"
}
}
}
}
Important: PYTHONPATH should point to the parent directory of where you cloned mcp_proxy, not the mcp_proxy directory itself. For example, if you cloned to /Users/me/src/mcp_proxy, set PYTHONPATH to /Users/me/src.
3. Use
After restarting Claude Code once to load the proxy, you can:
# Load any MCP server dynamically (no restart!)
load_mcp_server_dynamically("my-server")
# Call tools on loaded servers
call_dynamic_server_tool("my-server", "tool_name", {"param": "value"})
# Install and load from git in one step
install_and_load_mcp_server("https://github.com/user/mcp-server")
Available Tools (13 total)
| Tool | Description |
|---|---|
| Dynamic Loading | |
load_mcp_server_dynamically |
Load a server from .mcp.json |
call_dynamic_server_tool |
Call any tool on a loaded server |
get_loaded_servers |
List currently loaded servers |
reload_mcp_server |
Reload a server to pick up changes |
unload_mcp_server |
Stop and unload a server |
list_available_servers |
List all configured servers |
| Installation | |
install_mcp_server_from_git |
Install from git repository |
install_and_load_mcp_server |
Install and load in one step |
list_installed_mcp_servers |
List all installed servers |
uninstall_mcp_server |
Remove a server |
| Tool Search | |
search_tools |
Natural language search across loaded servers |
list_all_tools |
List all tools from all loaded servers |
get_tool_info |
Get detailed info about a specific tool |
How It Works
Claude Code
|
v
MCP Proxy Server (meta-tools)
|
v
Dynamic Server Loader (subprocess manager)
|
v
Individual MCP Servers (spawned on-demand)
The proxy spawns MCP servers as subprocesses and communicates with them using the MCP JSON-RPC protocol over stdin/stdout.
Usage Patterns
Hot-Reload During Development
# Load your server
load_mcp_server_dynamically("my-dev-server")
# Test it
call_dynamic_server_tool("my-dev-server", "my_feature", {})
# Make code changes...
# Reload with new code
reload_mcp_server("my-dev-server")
# Test again - no restart needed!
call_dynamic_server_tool("my-dev-server", "my_feature", {})
Programmatic Workflows
# Load the server
load_mcp_server_dynamically("user-management")
# Programmatic workflow
users = call_dynamic_server_tool("user-management", "list_users", {"limit": 100})
for user in users["data"]:
if user["needs_activation"]:
call_dynamic_server_tool("user-management", "activate_user", {
"user_id": user["id"]
})
Multi-Server Orchestration
# Load multiple servers
for server in ["database", "stripe", "email"]:
load_mcp_server_dynamically(server)
# Orchestrate across servers
customer = call_dynamic_server_tool("database", "get_customer", {"id": 123})
payment = call_dynamic_server_tool("stripe", "charge", {"amount": 2999})
call_dynamic_server_tool("email", "send_receipt", {"to": customer["email"]})
Creating Custom Servers
Create a FastMCP server and add it to .mcp.json:
# my_server.py
from fastmcp import FastMCP
mcp = FastMCP("my-server")
@mcp.tool()
def my_tool(param: str) -> dict:
"""Tool description"""
return {"success": True, "result": param}
if __name__ == "__main__":
mcp.run()
{
"mcpServers": {
"my-server": {
"command": "python",
"args": ["my_server.py"],
"cwd": "/path/to/server"
}
}
}
Then load it dynamically:
load_mcp_server_dynamically("my-server")
call_dynamic_server_tool("my-server", "my_tool", {"param": "hello"})
License
MIT
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。