MCP Quoting System
Intelligently generates cost estimates and lead times for manufacturing RFPs by parsing requests, matching against historical quotes, and calculating activity-based costs with confidence scoring and human approval workflows.
README
MCP Quoting System
An MCP (Model Context Protocol) based intelligent quoting system that compares incoming RFPs against historical quotes to generate accurate cost estimates and lead times.
🚀 Quick Start (Windows)
New to the system? Just double-click START.bat and choose option [1] for automatic setup!
See these guides:
- QUICKSTART.md - Visual guide with workflows and examples
- BATCH-FILES-README.md - Complete batch file documentation
- TEST-CASES.md - Sample RFQs to test the system
Available Batch Files
START.bat- Main interactive launcher (recommended) ⭐setup.bat- First-time installation wizardstart-dev.bat- Start development serverstart-prod.bat- Start production serverquick-test.bat- Automated testingstop.bat- Stop the server- See BATCH-FILES-README.md for complete list
Features
- RFP Parsing: Automatically extracts material, processes, quantities, tolerances, and other key information from text-based RFPs
- Historical Matching: Compares new requests against past quotes using intelligent similarity scoring
- Cost Estimation: Activity-based costing with material, processing, labor, tooling, and overhead calculations
- Lead Time Prediction: Estimates delivery time based on quantity, processes, and historical data
- Confidence Scoring: Provides low/medium/high confidence ratings based on data completeness and match quality
- Human-in-Loop: Requires approval before sending quotes, with full audit trails
- Idempotency: Prevents duplicate processing of the same RFP
Architecture
The system is built as an MCP server with the following capabilities:
MCP Functions (Capabilities)
- ingestRfp - Parse RFP text and extract structured information
- findSimilarQuotes - Search historical database for similar past quotes
- estimateCostLeadTime - Calculate cost and lead time estimates
- generateQuote - Create formatted quote documents
- approveQuote - Mark quotes as approved (human-in-loop)
- sendQuote - Send quotes via email (dry-run enabled)
Coordinator
- evaluateRfpAndDraftQuote - Orchestrates all functions to produce a complete quote evaluation
Installation
npm install
Configuration
- Copy
.env.exampleto.env:
cp .env.example .env
- Edit
.envwith your settings:
PORT=3789
SMTP_HOST=smtp.gmail.com
SMTP_PORT=587
SMTP_USER=your-email@example.com
SMTP_PASS=your-app-password
Usage
Start the Server
Development mode:
npm run dev
Production mode:
npm run build
npm start
Load Sample Historical Data
Copy sample quotes to the main database:
cp data/sample-quotes.json data/quotes.json
Example API Calls
1. Full Quote Evaluation (Coordinator)
curl -X POST http://localhost:3789/mcp/invoke/evaluateRfpAndDraftQuote \
-H "Content-Type: application/json" \
-d '{
"rfp": {
"rawText": "We need 200 pcs of a 6061-T6 aluminum widget, CNC machined, anodize finish, tolerance +/-0.005, delivery by 2025-02-28. Contact: buyer@acme.com",
"qty": 200,
"contactEmail": "buyer@acme.com",
"customerName": "Acme Corp"
}
}'
2. Get Formatted Review
curl -X POST http://localhost:3789/mcp/utility/formatReview \
-H "Content-Type: application/json" \
-d '{
"result": {<evaluation_result_from_previous_call>}
}'
3. View Historical Quotes
curl http://localhost:3789/mcp/utility/historicalQuotes
4. Add Historical Quote
curl -X POST http://localhost:3789/mcp/utility/addHistoricalQuote \
-H "Content-Type: application/json" \
-d '{
"id": "Q-NEW",
"quoteDate": "2024-11-12T10:00:00Z",
"customerName": "New Customer",
"normalized": {
"material": "steel",
"processes": ["laser", "bend"],
"qtyRange": [51, 100],
"tolerances": "+/-0.010"
},
"costPerUnit": 25.00,
"totalCost": 1875.00,
"leadDays": 14,
"approved": true
}'
Similarity Matching
The system uses rule-based similarity scoring with weighted components:
- Material (35%): Exact, family, or partial matches
- Processes (30%): Overlap of required processes
- Quantity (20%): Same range or adjacent ranges
- Tolerances (10%): Matching precision requirements
- Finish (5%): Surface treatment matching
Confidence Thresholds
- High confidence (≥85%): Very similar to past work, reliable estimate
- Medium confidence (70-85%): Similar family, adjust with caution
- Low confidence (<70%): New type of work, requires engineer review
Cost Estimation
Activity-based costing model:
Total Cost = Material + Processing + Labor + Tooling + Overhead + Margin
Components
- Material Cost: Unit price × quantity (from material price list)
- Processing Cost: Sum of process times × machine hour rate
- Labor Cost: Operator time × labor rate
- Tooling Amortization: Setup cost / quantity
- Overhead: 15% of direct costs
- Margin: 20% profit margin
- Contingency: 10% for low-confidence quotes
Lead Time Calculation
Lead Time = Procurement + Setup + Run Time + QA + Shipping
Adjustments based on:
- Quantity (higher volume = longer lead time)
- Process complexity (heat treat, plating add time)
- Historical actual lead times from similar quotes
Data Storage
Currently uses JSON files in the data/ directory:
quotes.json- Historical quotes databaseevaluations.json- Recent RFP evaluations (last 100)
For production, consider migrating to:
- PostgreSQL for relational data
- Vector database (Pinecone, Weaviate) for semantic similarity search
- Redis for caching and idempotency
Safety Features
- Human-in-Loop: All quotes default to "draft" status
- Dry-Run Email: Email sending requires explicit enablement
- Idempotency: Duplicate RFPs return cached results
- Audit Trails: All evaluations logged with timestamps
- Confidence Scoring: Flags uncertain estimates for review
Extending the System
Add New Materials
Edit src/config.ts:
materials: {
'titanium-grade-5': 18.0,
// Add more...
}
Add New Processes
Edit src/config.ts:
processes: {
'EDM': 40, // minutes per part
'Grinding': 25,
// Add more...
}
Integrate Vector Search
Replace the rule-based matcher in src/matcher.ts with:
- OpenAI embeddings for RFP text
- Vector DB (Pinecone, Weaviate, FAISS)
- Cosine similarity search
- Metadata filtering (material, process)
Add Database Backend
Replace src/storage.ts with database adapters:
- Use Prisma or TypeORM for PostgreSQL
- Implement connection pooling
- Add transactions for data integrity
Testing
Create test RFPs:
// Test 1: High similarity match
{
"rawText": "Need 250 units of 6061-T6 aluminum, CNC milled and anodized, +/-0.005 tolerance",
"qty": 250
}
// Test 2: New material
{
"rawText": "100 titanium brackets, laser cut and polished",
"qty": 100
}
// Test 3: Low detail (low confidence)
{
"rawText": "We need some metal parts",
"qty": 50
}
API Documentation
See full API documentation in the console output when starting the server.
Troubleshooting
No historical matches found
- Check that
data/quotes.jsonexists and has content - Verify material names match (case-insensitive)
- Lower similarity threshold in
src/config.ts
Costs seem incorrect
- Review material prices in
src/config.ts - Adjust machine hour rate and labor rate
- Check overhead and margin percentages
Lead times too short/long
- Adjust
defaultLeadDaysin config - Review process time estimates
- Check quantity-based scaling logic
Future Enhancements
- ML-based similarity: Train model on historical quote-to-win patterns
- Drawing analysis: Extract features from CAD/PDF drawings
- Supplier integration: Real-time material lead times from vendors
- CRM integration: Auto-populate customer info
- Dashboard UI: React frontend for engineers to review/approve
- Analytics: Win/loss tracking, pricing optimization
- Multi-currency: International quote support
- Revision tracking: Quote version history
License
MIT
Support
For issues or questions, please contact your system administrator.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。