MCP-RAG Server
Implements Retrieval-Augmented Generation (RAG) using GroundX and OpenAI, allowing users to ingest documents and perform semantic searches with advanced context handling through Modern Context Processing (MCP).
README
MCP-RAG: Model Context Protocol with RAG 🚀
A powerful and efficient RAG (Retrieval-Augmented Generation) implementation using GroundX and OpenAI, built with Modern Context Processing (MCP).
🌟 Features
- Advanced RAG Implementation: Utilizes GroundX for high-accuracy document retrieval
- Model Context Protocol: Seamless integration with MCP for enhanced context handling
- Type-Safe: Built with Pydantic for robust type checking and validation
- Flexible Configuration: Easy-to-customize settings through environment variables
- Document Ingestion: Support for PDF document ingestion and processing
- Intelligent Search: Semantic search capabilities with scoring
🛠️ Prerequisites
- Python 3.12 or higher
- OpenAI API key
- GroundX API key
- MCP CLI tools
📦 Installation
- Clone the repository:
git clone <repository-url>
cd mcp-rag
- Create and activate a virtual environment:
uv sync
source .venv/bin/activate # On Windows, use `.venv\Scripts\activate`
⚙️ Configuration
- Copy the example environment file:
cp .env.example .env
- Configure your environment variables in
.env:
GROUNDX_API_KEY="your-groundx-api-key"
OPENAI_API_KEY="your-openai-api-key"
BUCKET_ID="your-bucket-id"
🚀 Usage
Starting the Server
Run the inspect server using:
mcp dev server.py
Document Ingestion
To ingest new documents:
from server import ingest_documents
result = ingest_documents("path/to/your/document.pdf")
print(result)
Performing Searches
Basic search query:
from server import process_search_query
response = process_search_query("your search query here")
print(f"Query: {response.query}")
print(f"Score: {response.score}")
print(f"Result: {response.result}")
With custom configuration:
from server import process_search_query, SearchConfig
config = SearchConfig(
completion_model="gpt-4",
bucket_id="custom-bucket-id"
)
response = process_search_query("your query", config)
📚 Dependencies
groundx(≥2.3.0): Core RAG functionalityopenai(≥1.75.0): OpenAI API integrationmcp[cli](≥1.6.0): Modern Context Processing toolsipykernel(≥6.29.5): Jupyter notebook support
🔒 Security
- Never commit your
.envfile containing API keys - Use environment variables for all sensitive information
- Regularly rotate your API keys
- Monitor API usage for any unauthorized access
🤝 Contributing
- Fork the repository
- Create your feature branch (
git checkout -b feature/amazing-feature) - Commit your changes (
git commit -m 'Add some amazing feature') - Push to the branch (
git push origin feature/amazing-feature) - Open a Pull Request
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。