
MCP-RAG
An MCP-compatible system that handles large files (up to 200MB) with intelligent chunking and multi-format document support for advanced retrieval-augmented generation.
README
📚 MCP-RAG
MCP-RAG system built with the Model Context Protocol (MCP) that handles large files (up to 200MB) using intelligent chunking strategies, multi-format document support, and enterprise-grade reliability.
🌟 Features
📄 Multi-Format Document Support
- PDF: Intelligent page-by-page processing with table detection
- DOCX: Paragraph and table extraction with formatting preservation
- Excel: Sheet-aware processing with column context (.xlsx/.xls)
- CSV: Smart row batching with header preservation
- PPTX: Support for PPTX
- IMAGE: Suppport for jpeg , png , webp , gif etc and OCR
🚀 Large File Processing
- Adaptive chunking: Different strategies based on file size
- Memory management: Streaming processing for 50MB+ files
- Progress tracking: Real-time progress indicators
- Timeout handling: Graceful handling of long-running operations
🧠 Advanced RAG Capabilities
- Semantic search: Vector similarity with confidence scores
- Cross-document queries: Search across multiple documents simultaneously
- Source attribution: Citations with similarity scores
- Hybrid retrieval: Combine semantic and keyword search
🔌 Model Context Protocol (MCP) Integration
- Universal tool interface: Standardized AI-to-tool communication
- Auto-discovery: LangChain agents automatically find and use tools
- Secure communication: Built-in permission controls
- Extensible architecture: Easy to add new document processors
🏢 Enterprise Ready
- Custom LLM endpoints: Support for any OpenAI-compatible API
- Vector database options: ChromaDB (local) + Milvus (production)
- Batch processing: Handles API rate limits and batch size constraints
- Error recovery: Retry logic and graceful degradation
🏗️ Architecture
┌─────────────────┐ ┌──────────────────┐ ┌─────────────────┐ │ Streamlit │ │ LangChain │ │ MCP Server │ │ Frontend │◄──►│ Agent │◄──►│ (Tools) │ └─────────────────┘ └──────────────────┘ └─────────────────┘ │ ┌────────────────────────┼────────────────────────┐ │ ▼ │ ┌───────▼────────┐ ┌─────────────────┐ ┌──────▼──────┐ │ Document │ │ Vector Database │ │ LLM API │ │ Processors │ │ (ChromaDB) │ │ Endpoint │ └────────────────┘ └─────────────────┘ └─────────────┘
🚀 Quick Start
Prerequisites
- Python 3.11+
- OpenAI API key or compatible LLM endpoint
- 8GB+ RAM (for large file processing)
Installation
Clone the repository
git clone https://github.com/yourusername/rag-large-file-processor.git
cd rag-large-file-processor
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
pip install -r requirements.txt
# Create .env file
cat > .env << EOF
OPENAI_API_KEY=your_openai_api_key_here
BASE_URL=https://api.openai.com/v1
MODEL_NAME=gpt-4o
VECTOR_DB_TYPE=chromadb
streamlit run streamlit_app.py
推荐服务器

Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。