MCP Reasoning Engine
A production-ready reasoning engine that integrates Claude AI with specialized MCP tools for knowledge retrieval, schema validation, and domain-specific rubric evaluation. It enables structured RAG-based analysis across legal, health, and science domains via a RESTful API.
README
MCP Reasoning Engine with Claude Agent
A production-ready reasoning engine that combines Claude AI with Model Context Protocol (MCP) tools for structured reasoning across legal, health, and science domains.
Features
- 🤖 Claude Agent Integration: Uses Anthropic's Claude API with tool use capabilities
- 🔧 MCP Tools: Three specialized tools for knowledge search, schema validation, and rubric evaluation
- 📚 RAG Integration: Knowledge base search across domain-specific documents
- ✅ Schema Validation: Ensures structured JSON output matches required schemas
- 📊 Rubric Scoring: Domain-specific evaluation with pass/fail thresholds
- 🌐 HTTP API: RESTful API for easy integration
- 🐳 Docker Ready: Containerized deployment support
Architecture
┌─────────────────┐
│ HTTP API │ (Optional - mcp_api_server.py)
│ or Direct │
└────────┬────────┘
│
▼
┌─────────────────┐ ┌──────────────┐
│ Claude Agent │◄────►│ MCP Server │
│ claude_agent.py │ │ server.py │
└────────┬────────┘ └──────┬───────┘
│ │
▼ ▼
┌─────────────────┐ ┌──────────────┐
│ Anthropic API │ │ RAG Tools │
│ (Claude) │ │ Validators │
└─────────────────┘ └──────────────┘
Quick Start
Prerequisites
- Python 3.8+
- Anthropic API key (Get one here)
Installation
-
Clone or extract the project
cd reasoning_engine_mcp_demo -
Create virtual environment
python -m venv .venv # Windows .venv\Scripts\activate # Linux/Mac source .venv/bin/activate -
Install dependencies
pip install -r requirements.txt -
Set API key
# Windows PowerShell $env:ANTHROPIC_API_KEY = "your_api_key_here" # Linux/Mac export ANTHROPIC_API_KEY="your_api_key_here"
Usage
Option 1: Direct Python Usage
import asyncio
from mcp.claude_agent import ClaudeReasoningAgent
async def main():
agent = ClaudeReasoningAgent()
result = await agent.reason("Is a verbal promise enforceable?")
print(result)
asyncio.run(main())
Option 2: Command Line
python -m mcp.claude_agent --question "Your question here"
Option 3: HTTP API Server
# Start server
python mcp_api_server.py
# Server runs on http://localhost:8000
# API docs: http://localhost:8000/docs
API Example:
curl -X POST http://localhost:8000/reason \
-H "Content-Type: application/json" \
-d '{"question": "Is a verbal promise enforceable?"}'
Project Structure
reasoning_engine_mcp_demo/
├── mcp/ # MCP server and agent
│ ├── server.py # MCP server with 3 tools
│ ├── claude_agent.py # Claude agent with MCP integration
│ └── DEPLOYMENT.md # Deployment guide
├── rag_docs/ # Knowledge base documents
│ ├── legal/ # Legal domain documents
│ ├── health/ # Health domain documents
│ └── science/ # Science domain documents
├── domains/ # Domain configurations
│ ├── domain_config.json # Domain routing config
│ ├── legal/rubric.json # Legal rubric
│ ├── health/rubric.json # Health rubric
│ └── science/rubric.json # Science rubric
├── schemas/ # JSON schemas
│ └── universal_reasoning_schema.json
├── validators/ # Validation modules
│ ├── schema_validator.py
│ └── rubric_validator.py
├── tools_rag.py # RAG search implementation
├── router.py # Domain routing
├── mcp_api_server.py # HTTP API server
├── requirements.txt # Python dependencies
└── README.md # This file
MCP Tools
The MCP server exposes three tools:
-
search_knowledge_base(query: str)
- Searches RAG documents for relevant information
- Returns formatted results with source, title, and content
-
validate_reasoning_schema(output_json: str)
- Validates JSON output against the universal reasoning schema
- Returns validation status and errors
-
evaluate_with_rubric(domain: str, output_json: str)
- Evaluates reasoning output against domain-specific rubric
- Returns scores, pass/fail status, and human review flags
Domains
The system supports three domains:
- Legal: Contract law, enforceability, legal reasoning
- Health: Medical information, symptoms, safety boundaries
- Science: Scientific reasoning, hypotheses, evidence evaluation
Each domain has:
- Domain-specific RAG documents
- Custom rubric for evaluation
- Keyword-based routing
Configuration
Environment Variables
ANTHROPIC_API_KEY(required): Your Anthropic API keyMCP_PORT(optional): HTTP API port (default: 8000)MCP_HOST(optional): HTTP API host (default: 0.0.0.0)
Model Selection
Default model: claude-3-haiku-20240307
To use a different model:
agent = ClaudeReasoningAgent(model="claude-3-sonnet-20240229")
Available models:
claude-3-haiku-20240307(fast, cost-effective)claude-3-sonnet-20240229(balanced)claude-3-opus-20240229(most capable)
API Documentation
When running the HTTP API server, visit:
- Swagger UI: http://localhost:8000/docs
- ReDoc: http://localhost:8000/redoc
Endpoints
GET /- API informationGET /health- Health checkGET /tools- List available MCP toolsPOST /reason- Process a reasoning question
Testing
# Test MCP server tools
python test_mcp_server.py
# Test with Claude
python test_mcp_server.py --with-claude
# Run all test cases
python run_all_tests.py
Deployment
See mcp/DEPLOYMENT.md for detailed deployment instructions including:
- Local deployment
- Docker containerization
- Cloud deployment (AWS, Azure, GCP)
- Production best practices
Security Notes
- API Keys: Never commit API keys to version control
- Health Domain: Always requires human review (configured in rubric)
- Input Validation: All inputs are validated before processing
- HTTPS: Use HTTPS in production environments
Troubleshooting
"ANTHROPIC_API_KEY not found"
- Ensure environment variable is set in your shell session
- Check that it's set before running Python scripts
"ModuleNotFoundError: No module named 'mcp.claude_agent'"
- This is a namespace conflict with the
mcppackage - The code handles this automatically via importlib
- If issues persist, check Python path configuration
"Model not found" errors
- Verify your API key has access to the requested model
- Try using
claude-3-haiku-20240307(most widely available)
Support
For issues or questions, please refer to:
mcp/DEPLOYMENT.md- Deployment guideDEPLOYMENT_GUIDE.md- Detailed deployment options- API documentation at
/docsendpoint
Changelog
Version 1.0.0
- Initial release
- MCP server with 3 tools
- Claude agent integration
- HTTP API server
- Domain routing and rubric evaluation
- Full test suite# MCP
MCP
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。