MCP Resume Chat Server

MCP Resume Chat Server

Enables AI-powered conversations about resume/CV content and email notification sending through a comprehensive MCP server. Features a modern Next.js frontend with resume chat interface, email forms, and resume viewer for SE interview demonstrations.

Category
访问服务器

README

MCP Resume Chat Server

A comprehensive Model Context Protocol (MCP) server application that can chat about your resume/CV and send email notifications. Perfect for SE interviews and showcasing MCP capabilities.

🚀 Features

  • Resume Chat: AI-powered chat interface that answers questions about your resume
  • Email Notifications: Send email notifications through the MCP server
  • Modern Frontend: Beautiful Next.js interface with dark mode support
  • Well-Architected: Clean folder structure with TypeScript support
  • No Database Required: Uses JSON files for data storage

📁 Project Structure

mcp-server/
├── app/                          # Next.js frontend
│   ├── components/              # React components
│   │   ├── ChatInterface.tsx    # Resume chat interface
│   │   ├── EmailForm.tsx        # Email notification form
│   │   └── ResumeViewer.tsx     # Resume data viewer
│   ├── api/                     # API routes
│   │   └── resume/              # Resume data endpoint
│   └── page.tsx                 # Main application page
├── mcp-server/                  # MCP server implementation
│   ├── index.js                 # Main MCP server (JavaScript)
│   └── index.ts                 # Main MCP server (TypeScript)
├── services/                    # Business logic services
│   ├── resumeParser.js/ts       # Resume data parsing
│   ├── resumeChatService.js/ts  # AI chat functionality
│   └── emailService.js/ts       # Email sending service
├── config/                      # Configuration files
│   ├── email.ts                 # Email configuration
│   └── mcp.ts                   # MCP server configuration
├── data/                        # Data storage
│   └── resume.json              # Sample resume data
├── types/                       # TypeScript type definitions
│   └── index.ts                 # Core types and interfaces
└── lib/                         # Utility libraries

🛠️ Installation

  1. Clone the repository

    git clone <your-repo-url>
    cd mcp-server
    
  2. Install dependencies

    npm install
    
  3. Set up environment variables Create a .env.local file in the root directory:

    # OpenAI API Key (required for resume chat)
    OPENAI_API_KEY=your_openai_api_key_here
    
    # Email Configuration (optional, for real email sending)
    SMTP_HOST=smtp.gmail.com
    SMTP_PORT=587
    SMTP_SECURE=false
    SMTP_USER=your_email@gmail.com
    SMTP_PASS=your_app_password
    
  4. Update resume data Edit data/resume.json with your actual resume information.

🚀 Running the Application

Start the Next.js Frontend

npm run dev

Open http://localhost:3000 to view the application.

Start the MCP Server

# Using JavaScript version
npm run mcp

# Using TypeScript version (requires compilation)
npm run dev:mcp

📖 Usage

1. Resume Chat

  • Navigate to the "Resume Chat" tab
  • Ask questions about your resume like:
    • "What is my current position?"
    • "What companies have I worked for?"
    • "What are my main skills?"
    • "What was my last role?"

2. Email Notifications

  • Navigate to the "Email Notifications" tab
  • Use the quick templates or create custom emails
  • Configure SMTP settings for real email sending

3. Resume Viewer

  • Navigate to the "View Resume" tab
  • Browse through different sections of your resume
  • View formatted resume data

🔧 MCP Server Tools

The MCP server exposes two main tools:

1. resume_chat

Answers questions about resume/CV information.

Parameters:

  • question (string, required): The question to ask about the resume
  • context (string, optional): Additional context for the question

Example:

{
  "name": "resume_chat",
  "arguments": {
    "question": "What is my current position?",
    "context": "I'm preparing for an interview"
  }
}

2. send_email

Sends email notifications.

Parameters:

  • recipient (string, required): Email address of the recipient
  • subject (string, required): Subject of the email
  • body (string, required): Body content of the email
  • from (string, optional): Sender email address

Example:

{
  "name": "send_email",
  "arguments": {
    "recipient": "recipient@example.com",
    "subject": "Interview Invitation",
    "body": "Thank you for your application...",
    "from": "sender@example.com"
  }
}

🎯 Interview Demo Script

1. Show the Architecture

  • Explain the clean folder structure
  • Highlight separation of concerns (services, config, types)
  • Show TypeScript usage for type safety

2. Demonstrate MCP Server

  • Start the MCP server: npm run mcp
  • Show the tools it exposes
  • Explain how it integrates with AI for resume chat

3. Frontend Features

  • Show the modern UI with tabs
  • Demonstrate resume chat functionality
  • Show email notification form
  • Display resume viewer with different sections

4. Technical Highlights

  • No Database: Uses JSON files for simplicity
  • TypeScript: Full type safety throughout
  • Modern Stack: Next.js 15, React 19, Tailwind CSS
  • MCP Integration: Proper Model Context Protocol implementation
  • Error Handling: Comprehensive error handling and user feedback

🔧 Configuration

Email Setup (Optional)

To enable real email sending:

  1. Gmail Setup:

    • Enable 2-factor authentication
    • Generate an app password
    • Use the app password in SMTP_PASS
  2. Other Providers:

    • Update SMTP_HOST, SMTP_PORT, and SMTP_SECURE accordingly
    • Use appropriate authentication credentials

Resume Data

Update data/resume.json with your information:

  • Personal information
  • Work experience
  • Education
  • Skills
  • Projects
  • Certifications

🚀 Deployment

Frontend (Vercel)

npm run build
# Deploy to Vercel or your preferred platform

MCP Server

The MCP server can be deployed as a standalone Node.js application or integrated into existing systems.

🤝 Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Make your changes
  4. Add tests if applicable
  5. Submit a pull request

📄 License

This project is licensed under the MIT License.

🆘 Troubleshooting

Common Issues

  1. MCP Server not starting:

    • Check if all dependencies are installed
    • Verify Node.js version compatibility
    • Check console for error messages
  2. Resume chat not working:

    • Verify OpenAI API key is set
    • Check if resume data is loaded correctly
    • Ensure MCP server is running
  3. Email sending fails:

    • Verify SMTP configuration
    • Check email provider settings
    • Ensure app passwords are used for Gmail

Getting Help

  • Check the console logs for detailed error messages
  • Verify all environment variables are set correctly
  • Ensure all dependencies are installed

Built with ❤️ for SE interviews and MCP demonstrations

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选