MCP RSS News Agent
A FastMCP-based server that provides tools for discovering RSS feeds, fetching and processing news content, searching articles by keyword, and generating summaries across multiple news sources and categories.
README
MCP RSS News Agent
A FastMCP-based RSS news aggregation and processing agent that can discover, fetch, and summarize content from various RSS feeds.
Features
- Discover RSS feeds from any website
- Fetch entries from RSS feeds
- Extract and format content from feed entries
- Extract and process web content from any URL
- Search news articles by keyword
- Generate summaries for news articles
- Get top news by category and country
Installation
- Clone the repository
- Install the required dependencies:
pip install -r requirements.txt
- Create a
.envfile if you need environment variables (optional)
Usage
Start the MCP Server
python server.py
This will start the MCP server that exposes various RSS-related tools.
Available Tools
- get_rss_feed_entries: Fetches entries from an RSS feed URL
- discover_rss_feeds: Finds RSS feeds available on a website
- download_feed_content: Downloads and processes the content of a feed entry
- fetch_webpage: Extracts main content from any webpage URL using advanced techniques (NEW)
- search_news_by_keyword: Searches news articles across multiple feeds using a keyword
- create_news_summary: Creates summaries for news articles
- get_top_news_from_category: Gets top news from specific categories and countries
Examples
Discover RSS Feeds on a Website
response = mcp.invoke("discover_rss_feeds", {"website_url": "https://www.theguardian.com"})
print(f"Found {response['feeds_count']} feeds")
for feed in response['feeds']:
print(f"- {feed['title']}: {feed['url']}")
Get News Articles by Keyword
response = mcp.invoke("search_news_by_keyword", {
"keyword": "climate change",
"max_results": 5
})
for article in response['results']:
print(f"- {article['title']} ({article['source']})")
print(f" Link: {article['link']}")
print()
Extract Content from Any Webpage
response = mcp.invoke("fetch_webpage", {
"url": "https://example.com/article",
"output_format": "markdown",
"include_images": True
})
print(f"Title: {response['title']}")
print(f"Extraction method: {response['extracted_by']}")
print(f"Content preview: {response['content'][:200]}...")
Get Top News from a Category
response = mcp.invoke("get_top_news_from_category", {
"category": "technology",
"country": "us",
"max_results": 3
})
for article in response['results']:
print(f"- {article['title']} ({article['source']})")
Client Example
The project includes a command-line client (client_example.py) that provides easy access to all the MCP server tools:
# Get feed entries
python client_example.py feed https://www.theguardian.com/international/rss
# Search news by keyword
python client_example.py search "artificial intelligence"
# Extract content from a webpage with advanced extraction
python client_example.py webpage https://example.com/article --format markdown --images --save
# Get news by category
python client_example.py category technology --country us
Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
License
This project is licensed under the MIT License - see the LICENSE file for details.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。