MCP Search Server

MCP Search Server

Provides web search functionality for the Gemini Terminal Agent, handling concurrent requests and content extraction to deliver real-time information from the web.

Category
访问服务器

README

Gemini Terminal Agent

A powerful terminal-based agent using Google's Gemini model with web search capabilities. This agent lets you interact with Gemini through your terminal while leveraging real-time web search for up-to-date information.

Features

  • 🤖 Conversational AI Interface - Talk with Google's Gemini models directly from your terminal
  • 🔍 Web Search Integration - Get real-time information from the web
  • 💬 Conversation History - Maintain context throughout your conversation
  • 🛠️ Advanced Search Options - Filter by domains, exclude sites, and more
  • 📝 Clean, Modular Architecture - Well-structured codebase that's easy to extend

Installation

Prerequisites

  • Python 3.9+
  • Google API key for Gemini models
  • Google Custom Search Engine (CSE) API key and ID

Setup

  1. Clone the repository:

    git clone https://github.com/yourusername/gemini-terminal-agent.git
    cd gemini-terminal-agent
    
  2. Create a virtual environment (recommended):

    python -m venv venv
    source venv/bin/activate  # On Windows: venv\Scripts\activate
    
  3. Install dependencies:

    pip install -r requirements.txt
    
  4. Create a .env file in the project root with your API keys:

    GOOGLE_GENAI_API_KEY=your_gemini_api_key_here
    SEARCH_ENGINE_API_KEY=your_google_api_key_here
    SEARCH_ENGINE_CSE_ID=your_cse_id_here
    DEFAULT_MODEL=gemini-2.5-flash-preview-04-17
    

Setting Up Google Search Engine

To use the web search functionality, you need to set up a Google Custom Search Engine:

  1. Get a Google API Key:

    • Go to Google Cloud Console
    • Create a new project or select an existing one
    • Navigate to "APIs & Services" > "Library"
    • Search for "Custom Search API" and enable it
    • Go to "APIs & Services" > "Credentials"
    • Create an API key and copy it (this will be your SEARCH_ENGINE_API_KEY)
  2. Create a Custom Search Engine:

    • Go to Programmable Search Engine
    • Click "Create a Programmable Search Engine"
    • Add sites to search (use *.com to search the entire web)
    • Give your search engine a name
    • In "Customize" > "Basics", enable "Search the entire web"
    • Get your Search Engine ID from the "Setup" > "Basics" page (this will be your SEARCH_ENGINE_CSE_ID)
  3. Get a Gemini API Key:

    • Go to Google AI Studio
    • Sign in with your Google account
    • Go to "API Keys" and create a new API key
    • Copy the API key (this will be your GOOGLE_GENAI_API_KEY)

Usage

Run the agent from the terminal:

python main.py

Commands

  • Type your question or prompt to interact with the agent
  • Type help to see available tools and commands
  • Type clear to clear the conversation history
  • Type exit, quit, or q to exit the program

Example Queries

>>> What is the capital of France?
Paris is the capital of France. It is located in the north-central part of the country on the Seine River.

>>> search for recent developments in quantum computing
Searching the web for recent developments in quantum computing...
[Agent response with up-to-date information]

>>> help
🔍 Available Tools:
  - search: Search for information online based on a query
  - advanced_search: Perform an advanced search with domain filtering and time range options

⌨️ Terminal Commands:
  - help: Show this help message
  - clear: Clear conversation history
  - exit/quit/q: Exit the program

Project Structure

gemini-terminal-agent/
│
├── main.py               # Main entry point
├── search_server.py      # Search server entry point
├── .env                  # Environment variables (not versioned)
│
├── agent/                # Agent implementation
│   ├── __init__.py
│   ├── terminal_agent.py # Core agent implementation
│   └── config.py         # Agent configuration
│
├── search/               # Search functionality
│   ├── __init__.py
│   ├── server.py         # MCP search server
│   ├── engine.py         # Search engine implementation
│   └── content.py        # Web content extraction 
│
└── utils/                # Shared utilities
    ├── __init__.py
    ├── config.py         # Global configuration
    └── logging.py        # Logging setup

Advanced Configuration

You can customize the agent's behavior by modifying settings in your .env file:

# Model settings
DEFAULT_MODEL=gemini-2.5-flash-preview-04-17
# Other models: gemini-1.5-pro, gemini-1.5-flash

# Search settings
MAX_CONCURRENT_REQUESTS=5
CONNECTION_TIMEOUT=10
CONTENT_TIMEOUT=15
MAX_CONTENT_LENGTH=5000
CACHE_TTL=3600

Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

  1. Fork the repository
  2. Create your feature branch (git checkout -b feature/amazing-feature)
  3. Commit your changes (git commit -m 'Add some amazing feature')
  4. Push to the branch (git push origin feature/amazing-feature)
  5. Open a Pull Request

License

This project is licensed under the MIT License - see the LICENSE file for details.

Acknowledgments

  • This project uses LangChain for the agent framework
  • Web search functionality powered by Google Custom Search Engine
  • Built with Google's Gemini models

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选