MCP Securities Analysis
A Python-based FastMCP server that provides financial tools for securities analysis, including market data, news, fundamental/technical analysis, and visualization capabilities that can be consumed by any MCP-aware client.
README
MCP Securities Analysis
A Python-based flow for securities analysis using the Model Context Protocol (MCP). The repository bundles data-collection, parsing, analytics and visualisation tools behind a single FastMCP server so that they can be consumed locally or remotely by any MCP-aware client (e.g. Claude Desktop, LangChain, OpenAI-Function calling, etc.).
Example deep research report for Tesla.
This was generated semi-autonomously by the following steps:
- connect MCP tools to Claude Desktop, including web search, Perplexity, Wikipedia, in addition to the market data tools in server.py for fundamental, technical analysis, and news search.
- prompt Claude Desktop to query Perplexity, Wikipedia, and the 10-K to write a profile of Tesla
- prompt Claude Desktop to query each tool for info on Tesla
- finally, enable deep research and prompt Claude Desktop to write a deep report in 8 sections with details on what each section should cover, using the information retrieved from the tools.
While it's not a fully autonomous agent and at an early POC level, it shows clear path toward a fully autonomous agent. Create an MCP client that goes through the steps above and generates a deep report on Tesla in a structured format with graphs and tables. And then create an even more advanced multi-agent workflow with a set of parallel agents for each section, and a critic-optimizer workflow, and a final report generator.
Features
- FastMCP server – exposes a few MCP tools to get market data, news, charts, SEC filings, fundamental, technical data, research from public web sites, subscription services, and REST APIs.
- Market data – real-time and historical OHLCV data via
yfinance&OpenBB. - Fundamental data – automatic downloading of SEC filings (
sec_downloader) and rich XBRL/HTML parsing throughsec_parser. - News & Social sentiment – headlines with
newsapi-pythonplus Reddit scraping utilities. - Technical analysis – hundreds of indicators with
pandas_ta&TA-Lib. - Interactive plots – high-quality Plotly charts exported server-side (static PNG or interactive HTML).
- Async-first design – built on
asyncio,aiohttp,httpx& Playwright for maximum throughput.
- this section AI-generated so beware of hype. New project, would like to share and get comments, not extensively tested. Use it as a starting point, at your own risk.
Quick Start
# 1. Clone and enter the project
$ git clone https://github.com/<your-org>/MCP.git
$ cd MCP
# 2. Create & activate a virtualenv (recommended)
$ python -m venv .venv
$ source .venv/bin/activate
# 3. Install python dependencies
$ pip install -r requirements.txt
# 4. Install Playwright browsers (once)
$ playwright install
# 5. Copy environment template & add your keys
$ cp dotenv.txt .env # then edit as needed
# 6. Launch and test the server
$ LOGLEVEL=DEBUG mcp dev server.py
# click to the link in the terminal to open the test page, connect, view tools, and then test them individually
# 7. Use the server in your MCP client of choice. For Claude Desktop, install the provided claude_desktop_config.json file for your platform (macOS, Windows).
Project Structure
MCP/
├── claude_desktop_config.json # Configuration for Claude Desktop
├── dotenv.txt # Secrets / Environment variables
├── README.md # This file
├── server.py # FastMCP server, launched by mcp dev or Claude desktop or other MCP client
├── requirements.txt # Python dependencies
├── sources.yaml # Data-source configuration used by server
├── Market Data.ipynb # Jupyter notebook to fetch market data
├── TearSheet.ipynb # Jupyter notebook to do basic analysis
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。