MCP Self-Learning Server
Enables autonomous learning from interactions through pattern recognition and machine learning techniques. Continuously improves performance by analyzing tool usage, providing predictive suggestions, and sharing knowledge across MCP servers.
README
MCP Self-Learning Server
A sophisticated Model Context Protocol (MCP) server that autonomously learns from interactions, optimizes performance, and continuously improves its knowledge base through pattern recognition and machine learning techniques.
🌟 Features
🧠 Autonomous Learning Engine
- Pattern Recognition: Automatically identifies and learns from interaction patterns
- Feature Extraction: Analyzes tool sequences, context, performance metrics, and semantic embeddings
- Confidence Scoring: Evaluates pattern reliability based on frequency, recency, and consistency
- Memory Consolidation: Manages short-term and long-term pattern storage
🔄 Knowledge Synchronization
- Auto-sync: Every 60 seconds between MCP servers
- Knowledge Export/Import: JSON and Markdown formats
- Pattern Merging: With deduplication
- Cross-server Learning: Through shared knowledge directory
📊 Self-Improvement Capabilities
- Performance Optimization: Identifies redundancies and bottlenecks
- Predictive Suggestions: Anticipates next actions based on learned patterns
- Error Pattern Analysis: Learns from failures to improve success rates
- Adaptive Recommendations: Generates context-aware optimizations
💾 Data Persistence
- Automatic Data Saving: Every 5 minutes with backup rotation
- Learning Data Recovery: Loads previous sessions on startup
- Export Knowledge: Multiple formats (JSON, Markdown)
- Backup System: Automatic backup creation before saves
📝 Advanced Logging
- Multi-level Logging: Debug, Info, Warn, Error with colors and emojis
- File & Console Output: Simultaneous logging to both
- Log Rotation: Prevents disk space issues
- Performance Monitoring: Tool execution times and memory usage
🚀 Quick Start
Prerequisites
- Node.js 18+
- npm or yarn
Installation
-
Clone/Download the Project
cd ~/saralegui-solutions-llc/shared/MCPSelfLearningServer -
Install Dependencies
npm install -
Configure Claude Desktop
Add to
~/.config/Claude/claude_desktop_config.json:{ "mcpServers": { "self-learning": { "command": "node", "args": ["/home/ben/saralegui-solutions-llc/shared/MCPSelfLearningServer/mcp-self-learning-server.js"], "env": { "NODE_ENV": "production", "LEARNING_MODE": "autonomous" } } } } -
Start the Server
npm start
📋 Available Commands
Development & Testing
npm run dev # Start in development mode
npm run debug # Start with debug logging
npm test # Run all tests
npm run test:unit # Run unit tests only
npm run test:integration # Run integration tests only
Monitoring & Health
npm run health # Run comprehensive health check
npm run monitor # Real-time monitoring
npm run monitor:details # Detailed monitoring with change tracking
Manual Operations
# Health check
node tools/health-check.js
# Real-time monitoring
node tools/monitor.js [--interval 5] [--details]
# Start server directly
node mcp-self-learning-server.js
🛠️ Available MCP Tools
Core Learning Tools
analyze_pattern
Analyze and learn from interaction patterns
{
"interaction": {
"type": "tool_usage",
"input": "user input",
"output": "tool output",
"context": {},
"performance": { "duration": 100 },
"success": true
}
}
get_insights
Get current learning analytics and insights
{}
trigger_learning
Manually trigger a learning cycle
{}
Knowledge Management
export_knowledge
Export learned knowledge to file
{
"format": "json|markdown" // Optional, defaults to json
}
import_knowledge
Import knowledge from external source
{
"source": "file_path_or_url",
"format": "json" // Optional
}
Performance & Optimization
optimize_tool
Get optimization suggestions for specific tools
{
"tool_name": "example_tool" // Optional
}
predict_next_action
Get predictive suggestions based on current context
{
"context": {
"current_tool": "analyze_pattern",
"user_intent": "optimization"
}
}
get_performance_metrics
Get detailed performance analytics
{
"tool_name": "specific_tool" // Optional, for tool-specific metrics
}
📊 Monitoring & Analytics
Health Check Results
The health check tool verifies:
- ✅ Server startup functionality
- ✅ Data persistence system
- ✅ Logging system
- ✅ Performance metrics (startup time)
Real-time Monitoring
The monitor displays:
- Learning engine status (patterns, knowledge, cycles)
- Log file metrics and activity
- System resource usage
- Change indicators showing growth over time
Performance Expectations
| Metric | Target | Excellent |
|---|---|---|
| Startup Time | <5s | <1s |
| Memory Usage | <100MB | <50MB |
| Response Time | <500ms | <100ms |
| Learning Accuracy | >70% | >90% |
🗂️ Directory Structure
MCPSelfLearningServer/
├── mcp-self-learning-server.js # Main server file
├── package.json # Dependencies and scripts
├── README.md # This file
├── data/ # Persistent learning data
│ ├── learning-engine.json # Main learning data
│ └── learning-engine.backup.json # Backup
├── logs/ # Server logs
│ └── mcp-server.log # Main log file
├── lib/ # Shared libraries
│ └── logger.js # Enhanced logging system
├── test/ # Test suites
│ ├── unit/ # Unit tests
│ └── integration/ # Integration tests
└── tools/ # Development tools
├── health-check.js # Health check tool
└── monitor.js # Real-time monitoring
🔧 Configuration
Environment Variables
| Variable | Default | Description |
|---|---|---|
NODE_ENV |
production |
Environment mode |
LOG_LEVEL |
info |
Logging level (debug/info/warn/error) |
LOG_CONSOLE |
true |
Enable console logging |
LOG_FILE |
true |
Enable file logging |
LEARNING_MODE |
autonomous |
Learning behavior mode |
Learning Engine Settings
- Max Memory Size: 1000 patterns in memory
- Auto-save Interval: 5 minutes
- Pattern Confidence Threshold: 0.5
- Learning Trigger: Every 100 interactions or 50 tool uses
🚨 Troubleshooting
Common Issues
-
Server Won't Start
- Check Node.js version (18+ required)
- Verify all dependencies installed:
npm install - Check file permissions
-
Data Not Persisting
- Verify
data/directory permissions - Check disk space
- Review logs for errors:
tail -f logs/mcp-server.log
- Verify
-
High Memory Usage
- Run health check:
npm run health - Check pattern count:
npm run monitor - Consider reducing max memory size
- Run health check:
-
Slow Performance
- Enable performance logging:
npm run debug - Check system resources
- Review learning cycle frequency
- Enable performance logging:
Log Analysis
# View recent logs
tail -f logs/mcp-server.log
# Search for errors
grep "ERROR" logs/mcp-server.log
# Count log levels
grep -c "INFO\|WARN\|ERROR" logs/mcp-server.log
📈 Expected Learning Outcomes
Immediate (0-100 interactions)
- Basic pattern recognition active
- Initial knowledge base building
- Tool usage tracking enabled
Short-term (100-1000 interactions)
- Pattern confidence scores stabilizing
- First optimization recommendations
- Predictive accuracy ~50%
Long-term (1000+ interactions)
- Predictive accuracy >70%
- Response time improvements ~30%
- Comprehensive knowledge graph
- Cross-server knowledge sharing
- Self-documenting insights
🤝 Integration with Claude
Once configured, the server provides these tools in Claude:
- Pattern analysis for learning from conversations
- Performance insights for optimization
- Predictive suggestions for improved responses
- Knowledge export for documentation
- Real-time learning from every interaction
📝 License
ISC License
🆘 Support
For issues or questions:
- Run health check:
npm run health - Check logs:
tail -f logs/mcp-server.log - Review this documentation
- Check server status:
npm run monitor
Built with ❤️ for autonomous learning and continuous improvement
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。