MCP Server
A local middleware Node.js application for Windows that enables seamless communication between LLM-based tools like Copilot Agents, providing access to local guide files and custom prompts through built-in tools.
README
Project Description
This project is a Node.js application for Windows OS called MCP Server. It serves as a local middleware for seamless communication between LLM-based tools (e.g., Copilot Agents). The server is designed to be run locally, ideally alongside an IDE like Visual Studio Code or Visual Studio.
MCP Server uses the third-party library @modelcontextprotocol/sdk, which allows you to run and test it in a web browser using the Inspector tool.
The project includes a predefined ./data directory that contains documentation and guide files used to assist with coding. Additionally, a ./data/prompts subfolder contains prompt files used by Copilot Agents to guide their behavior and output.
Configuration
Set the following environment variables:
GUIDE_FILES_DIR: Path to the directory containing your local guide files (e.g.,.\\data).PROMPT_DIR: Path to your prompt directory (e.g.,.\\dat\\prompts). Prompt files must be.txtfiles and start with the prefixprompt_.
You can set these variables in a .env file or pass them directly in the terminal when running the app.
Keep in mind having dobule "\" in your path names.
Example .env file:
GUIDE_FILES_DIR=C:\\pathToYourProject\\mcpLocalServer\\data\
PROMPT_DIR=C:\\pathToYourProject\\mcpLocalServer\\data\\prompts
💡 The paths should directly point to the folders where your guide and prompt files are located. It’s recommended to create a
promptssubfolder underdata.
Features
There are 3 build-in tools which you can use:
ListAvailableFilesTool– Lists all.txtfiles located in thedatadirectory.ListPromptsTool– Lists all prompt files located in thedata/promptsdirectory.ReadLocalFileTool– Reads and returns the content of a file from eitherdataordata/prompts, depending on the file prefix.
Usage
-
Install dependencies:
npm install -
Configure environment variables using a
.envfile or directly in the terminal. -
Build the project:
npm run build -
Run the server for browser testing:
npx @modelcontextprotocol/inspector build/index.js -
Use the MCP-compatible client (like Copilot for Visual Studio Code) to interact with the server.
Usage with Visual Studio Code
To integrate with Copilot:
- Create a
.vscodedirectory in your project. - Add a
mcp.jsonfile with the following content:
{
"inputs": [],
"servers": {
"local": {
"command": "node",
"args": ["C:\\pathToMcpLocalServerProjectInYourPC\\build\\index.js"]
}
}
}
-
Follow the instructions from the official documentation to enable MCP support in VS Code.
-
Start your server if is disabled with a command: ctrl+shift+p MCP:List Servers -> next chose you server Name and click action [""Start","Stop","Restart"]
-
You should see MCP server Logs in OUTPUT terminal: 2025-05-30 08:35:10.855 [warning] [server stderr] ✅ Local MCP server running on stdio 2025-05-30 08:35:10.864 [info] Discovered 3 tools
⚠️ Make sure you're using the latest or pre-release version of Visual Studio Code that supports Agents.
Example prompt using guide files and custom prompts: You can find more examples in "../docs/VisualCode_Copilot_Examples"
Description: 💾 Create C# Class
Prompt text:
Use the local MCP server.
Step 1: Load the prompt file named "prompt_csharp_class_authoring.txt" using the "read_local_file" tool with the argument "fileName".
Step 2: Once the file is loaded, execute all instructions defined in that file. If those instructions require using additional tools, follow them accordingly.
Step 3: After completing all steps from the prompt file, generate a C# (.cs) file with a class named House. The class should contain Windows and Doors properties, and include methods to build them.
Ensure that the implementation follows all guidelines and conventions from the loaded prompt file.
Customization
You can extend this project by adding your own guide or prompt files:
- Add a guide file: Create a
.txtfile with the prefixguide_and place it in the folder defined byGUIDE_FILES_DIR. - Add a prompt file: Create a
.txtfile with the prefixprompt_and place it in the folder defined byPROMPT_DIR.
You can also develop custom tools:
- Create a new
YourTool.tsfile in thesrc/toolsdirectory. - Register the tool in
localMcpServer.ts. - Rebuild the project before running tests.
License
This project is licensed under the MIT License.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。