
MCP Server Basic Example
A simple implementation of a Model Context Protocol server that demonstrates core functionality including mathematical tools (add, subtract) and personalized greeting resources.
README
MCP Server Basic Example
This is a basic example of a Model Context Protocol (MCP) server implementation that demonstrates core functionality including tools and resources.
Setup Steps
- Initialize the project (Go to any local folder and launch powershell or cmd):
uv init mcp-server-basic
cd mcp-server-basic
-
Create virtual environment and activate it
uv venv
.venv\Scripts\activate
- Install dependencies:
uv add "mcp[cli]"
or
uv add -r requirements.txt
Features
The server implements the following features:
Tools
add(a: int, b: int)
: Adds two numberssubtract(a: int, b: int)
: Subtracts second number from first
Resources
greeting://{name}
: Returns a personalized greeting
Running the Server
To run the server with the MCP Inspector for development:
uv run mcp dev main.py
To run the server normally:
uv run mcp run
To install the server in Claude desktop app:
uv run mcp install main.py
MCP connect in VS code
- Open folder/mcp-server-basic in vs code
- open terminal and run below command :
uv run main.py
- Click Cntrl+Shift+I to launch chat in vs code
- Do login with Github and setup
- Folow the below steps (two way to add mcp configuration for vs code user settings):
Project Structure
main.py
: Main server implementation with tools and resourcespyproject.toml
: Project configuration and dependencies
2.0 Agentic AI And GENERATIVE AI With MCP Bootcamp
Course Overview:
Mentors: Sourangshu Paul, Mayank Aggarwal , Krish And Sunny
Start Date:May 10th 2025
Timing: 8am to 11am IST(Saturday And Sunday)
Duration : 4-5 months
This course is designed for AI developers, machine learning engineers, data scientists, and software engineers looking to build expertise in agentic AI, multi-agent systems, and AI-powered automation. Whether you are new to AI agents or have experience in NLP and GenAI, this course will equip you with the knowledge and hands-on skills required to develop, deploy, and manage AI agents at scale. By the end of the course, you will have a strong foundation in agentic AI frameworks, multi-agent collaboration, real-world automation, and end-to-end AI deployment, along with practical experience through real-world projects.
推荐服务器

Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。