MCP Server Boilerplate

MCP Server Boilerplate

A starter template for building Model Context Protocol servers that can integrate with AI assistants like Claude or Cursor, providing custom tools, resource providers, and prompt templates.

Category
访问服务器

README

MCP Server Boilerplate

A starter template for building MCP (Model Context Protocol) servers. This boilerplate provides a clean foundation for creating your own MCP server that can integrate with Claude, Cursor, or other MCP-compatible AI assistants.

Purpose

This boilerplate helps you quickly start building:

  • Custom tools for AI assistants
  • Resource providers for dynamic content
  • Prompt templates for common operations
  • Integration points for external APIs and services

Features

  • Simple "hello-world" tool example
  • TypeScript support with proper type definitions
  • Easy installation scripts for different MCP clients
  • Clean project structure ready for customization

How It Works

This MCP server template provides:

  1. A basic server setup using the MCP SDK
  2. Example tool implementation
  3. Build and installation scripts
  4. TypeScript configuration for development

The included example demonstrates how to create a simple tool that takes a name parameter and returns a greeting.

Getting Started

# Clone the boilerplate
git clone <your-repo-url>
cd mcp-server-boilerplate

# Install dependencies
pnpm install

# Build the project
pnpm run build

# Start the server
pnpm start

Installation Scripts

This boilerplate includes convenient installation scripts for different MCP clients:

# For Claude Desktop
pnpm run install-desktop

# For Cursor
pnpm run install-cursor

# For Claude Code
pnpm run install-code

# Generic installation
pnpm run install-server

These scripts will build the project and automatically update the appropriate configuration files.

Usage with Claude Desktop

The installation script will automatically add the configuration, but you can also manually add it to your claude_desktop_config.json file:

{
  "mcpServers": {
    "your-server-name": {
      "command": "node",
      "args": ["/path/to/your/dist/index.js"]
    }
  }
}

Then restart Claude Desktop to connect to the server.

Customizing Your Server

Adding Tools

Tools are functions that the AI assistant can call. Here's the basic structure:

server.tool(
  "tool-name",
  "Description of what the tool does",
  {
    // Zod schema for parameters
    param1: z.string().describe("Description of parameter"),
    param2: z.number().optional().describe("Optional parameter"),
  },
  async ({ param1, param2 }) => {
    // Your tool logic here
    return {
      content: [
        {
          type: "text",
          text: "Your response",
        },
      ],
    };
  }
);

Adding Resources

Resources provide dynamic content that the AI can access:

server.resource(
  "resource://example/{id}",
  "Description of the resource",
  async (uri) => {
    // Extract parameters from URI
    const id = uri.path.split("/").pop();

    return {
      contents: [
        {
          uri,
          mimeType: "text/plain",
          text: `Content for ${id}`,
        },
      ],
    };
  }
);

Adding Prompts

Prompts are reusable templates:

server.prompt(
  "prompt-name",
  "Description of the prompt",
  {
    // Parameters for the prompt
    topic: z.string().describe("The topic to discuss"),
  },
  async ({ topic }) => {
    return {
      description: `A prompt about ${topic}`,
      messages: [
        {
          role: "user",
          content: {
            type: "text",
            text: `Please help me with ${topic}`,
          },
        },
      ],
    };
  }
);

Project Structure

├── src/
│   └── index.ts          # Main server implementation
├── scripts/              # Installation and utility scripts
├── dist/                 # Compiled JavaScript (generated)
├── package.json          # Project configuration
├── tsconfig.json         # TypeScript configuration
└── README.md            # This file

Development

  1. Make changes to src/index.ts
  2. Run pnpm run build to compile
  3. Test your server with pnpm start
  4. Use the installation scripts to update your MCP client configuration

Next Steps

  1. Update package.json with your project details
  2. Customize the server name and tools in src/index.ts
  3. Add your own tools, resources, and prompts
  4. Integrate with external APIs or databases as needed

License

MIT

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选