MCP Server Bootstrap
A Python-based template for creating modular command center servers using the Mondel Context Protocol that provides a structured foundation for building scalable applications with mathematical operations and modular arithmetic functions.
README
MCP Server Bootstrap: A Template for Building Modular Command Center Servers
MCP Server Bootstrap is a Python-based template for creating modular command center servers using the Mondel Context Protocol (MCP). It provides a structured foundation for building scalable command center applications with support for basic mathematical operations and modular arithmetic functions.
The project implements a modular architecture that combines individual function files into a single server core at runtime. This approach maintains code organization during development while accommodating current MCP SDK limitations regarding modularity. The template provides a foundation for building scalable command center applications with custom functionality.
Repository Structure
mcp_server/ # Main package directory
├── build_mcp.py # Script to combine function modules into core server file
├── functions/ # Directory containing individual function implementations
│ ├── add.py # Addition operation implementation
│ ├── product19.py # Modulo 19 multiplication implementation
│ └── subtract.py # Subtraction operation implementation
├── utils/ # Utility functions and helper modules
│ └── helper.py # Common helper functions
├── pyproject.toml # Project metadata and dependencies
├── requirements.txt # Project dependencies
└── setup.sh # Installation and setup script
Usage Instructions
Prerequisites
- Python 3.11 or higher
- Amazon Q CLI installed and configured
- pip package manager
- Unix-like environment (for setup.sh)
Required packages:
- fastmcp >= 1.0.0
- pydantic >= 1.10.0
Installation
# Clone the repository
git clone <repository-url>
cd mcp-bootstrap
# Make the setup script executable
chmod +x setup.sh
# The setup script will configure the server for use with Amazon Q CLI
# by creating necessary configuration in $HOME/.aws/amazonq/mcp.json
# Run the setup script
./setup.sh
Quick Start
- Create a new function in the
mcp_server/functionsdirectory:
# mcp_server/functions/example.py
@mcp.tool(
name="example",
description="Example function"
)
def example_function(a: int, b: int) -> int:
return a + b
- Build the server:
python mcp_server/build_mcp.py
- Run the server:
python mcp_server/core_combined.py
Troubleshooting
Common issues and solutions:
-
Module Not Found Errors
- Error:
ModuleNotFoundError: No module named 'fastmcp' - Solution: Ensure you've activated the virtual environment and installed dependencies:
source .venv/bin/activate pip install -r requirements.txt
- Error:
-
Build Failures
- Error:
FileNotFoundError: core_combined.py not found - Solution: Run the build script from the project root:
python mcp_server/build_mcp.py
- Error:
-
Version Compatibility
- Error:
Python version X.X is less than required 3.11 - Solution: Install Python 3.11 or higher and ensure it's in your PATH
- Error:
Data Flow
The MCP server processes function calls by combining individual function modules into a single core server file, which then handles incoming requests and routes them to the appropriate function implementation.
[Client Request] -> [MCP Server Core] -> [Function Router] -> [Individual Function] -> [Response]
|-> [Function Registry]
Component interactions:
- The build script combines individual function files into a single core server file
- The MCP server initializes with the combined functions
- Client requests are received by the server core
- Requests are routed to the appropriate function based on the tool name
- Functions process the input and return results
- The server core formats and sends the response back to the client
- Error handling is managed at both the server and function levels
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。
mcp-server-qdrant
这个仓库展示了如何为向量搜索引擎 Qdrant 创建一个 MCP (Managed Control Plane) 服务器的示例。