MCP Server Builder
Scaffolds new MCP server projects with intelligent file analysis that auto-detects capabilities based on your data files, generating complete TypeScript projects with build tools and development workflow.
README
MCP Server Builder
A minimalist MCP server that scaffolds basic MCP server projects for VS Code and Cursor.
For Users
Installation
git clone https://github.com/joe-watkins/MCP-Builder.git
cd MCP-Builder
npm install
npm run build
MCP Configuration
Add this to your editor's MCP settings configuration files:
VS Code:
{
"mcp.servers": {
"mcp-server-builder": {
"command": "node",
"args": ["/absolute/path/to/MCP-Builder/dist/index.js"]
}
}
}
Cursor:
{
"mcp.servers": {
"mcp-server-builder": {
"command": "node",
"args": ["/absolute/path/to/MCP-Builder/dist/index.js"]
}
}
}
Note: Replace /absolute/path/to/MCP-Builder with the actual absolute path where you cloned this repository.
Usage
Once configured, use the create_mcp_server tool to generate new MCP server projects:
- name (required): Project name (kebab-case recommended)
- description (optional): Project description
- author (optional): Author name
- outputPath (optional): Target directory (defaults to current working directory)
- includeResources (optional): Force include resources capability (default: false)
- analyzeFiles (optional): File paths to analyze for auto-determining capabilities
- createSubdirectory (optional): Create project in new subdirectory (default: false)
Intelligent File Analysis
The builder can analyze your files to automatically determine what capabilities to include:
{
"name": "my-smart-server",
"analyzeFiles": ["./data.json", "./config.yaml", "./docs/"]
}
Auto-detects Resources for:
- Data files:
.json,.yaml,.xml,.csv,.txt,.md - Config files:
.config,.env, files named "config" - Directories containing data files
- Files with structured content (JSON/YAML patterns)
Directory Behavior
Default (Current Directory):
{
"name": "my-server"
}
→ Creates files directly in current directory
Subdirectory Mode:
{
"name": "my-server",
"createSubdirectory": true
}
→ Creates ./my-server/ subdirectory with files
Tutorial: Your First MCP Server with Example Data
This project includes a fun example JSON dataset to help you create your first MCP server: Ferengi Rules of Acquisition from Star Trek! This is perfect for learning how to build an MCP server that serves data.
Once you get the MCP Server Builder set up, you can use the create_mcp_server tool to generate a server that provides access to this dataset - or just use a prompt. The builder will analyze the JSON file and automatically include the Resources capability, making it easy to serve the data to your AI assistant.
What's Included
The docs/ferengi-rules-of-acquisition.json file contains 200+ Rules of Acquisition—the sacred commercial guidelines of the Ferengi species. Each rule includes:
- Rule number
- The rule text
- Source (episode, novel, or game)
Create Your First Server
Step 1: Copy the example data to a new folder
mkdir ferengi-rules-server
cp docs/ferengi-rules-of-acquisition.json ferengi-rules-server/
Step 2: Ask your AI assistant to build the server
In VS Code/Cursor, simply tell your AI assistant:
"Create an MCP server in the ferengi-rules-server folder that provides access to Ferengi Rules of Acquisition. Analyze the ferengi-rules-of-acquisition.json file in that directory."
That's it! Your AI assistant will use the create_mcp_server tool to:
- Detect the JSON data file
- Automatically include the Resources capability
- Generate a complete MCP server project with all the scaffolding
- Set up TypeScript, build tools, and development workflow
Ideas for Your Server
Once you have the basic server running, you could add:
-
Tools:
get_rule_by_number- Fetch a specific rulesearch_rules- Search by keywordrandom_rule- Get a random rule for inspirationrules_by_source- Filter by episode or book
-
Resources:
ferengi://rules/all- All rules as a resourceferengi://rules/{number}- Individual rule by numberferengi://rules/random- Random rule
-
Prompts:
- Help users apply Ferengi wisdom to their business decisions
- Generate "Ferengi-style" advice for scenarios
Example prompts to add these features:
"Add a tool called
get_rule_by_numberto the Ferengi server that takes a rule number and returns that specific rule from the JSON file."
"Add a
search_rulestool that searches through all the rules and returns any that contain the search keyword in the rule text."
"Create a
random_ruletool that returns a random Ferengi Rule of Acquisition for inspiration."
This example demonstrates how any JSON data source can become an MCP server that AI assistants can query and use!
Generated Project Features
- TypeScript with strict configuration
- MCP SDK integration with best practices
- Example tool implementation
- Optional resources capability (auto-detected or manual)
- Development workflow with hot reload
- Comprehensive build setup
For Developers
Development Setup
git clone https://github.com/joe-watkins/MCP-Builder.git
cd MCP-Builder
npm install
npm run dev
Scripts
npm run build- Compile TypeScriptnpm run dev- Development mode with hot reloadnpm start- Run compiled server
Project Structure
src/
├── index.ts # Entry point
├── server.ts # Main server implementation
└── tools/
└── create-mcp-server.ts # Server generation tool
Contributing
The generated projects include everything needed to start building MCP servers immediately. When making changes to the builder:
- Test with
npm run devfor hot reload - Build with
npm run build - Test the generated servers to ensure they work correctly
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。