MCP Server Demo - Learning Project
A comprehensive learning project demonstrating MCP server implementation with tools for calculator operations, file management, and system information retrieval, including Google ADK integration patterns and best practices.
README
MCP Server Demo - Learning Project
A comprehensive learning project demonstrating how to build a Model Context Protocol (MCP) server with Google ADK integration using best practices.
🎯 Learning Objectives
This project teaches you:
-
MCP Server Architecture
- How to structure an MCP server
- Tool definitions and handlers
- Resource management
- Error handling patterns
-
Best Practices
- TypeScript for type safety
- Separation of concerns
- Input validation and security
- Error handling
- Extensible architecture
-
Google ADK Integration
- Integration points for Google Actions
- Analytics and logging
- Fulfillment handlers (placeholder)
📁 Project Structure
mcp-server-demo/
├── src/
│ ├── index.ts # Main server entry point
│ ├── tools/
│ │ ├── base-tool.ts # Base tool interface
│ │ ├── calculator.ts # Calculator tool example
│ │ ├── file-operations.ts # File operations tool
│ │ └── system-info.ts # System information tool
│ └── integrations/
│ └── google-adk.ts # Google ADK integration
├── package.json
├── tsconfig.json
└── README.md
🚀 Getting Started
Prerequisites
- Node.js 18+
- npm or yarn
Installation
# Install dependencies
npm install
# Build the project
npm run build
# Run in development mode (with auto-reload)
npm run dev
# Run the built server
npm start
🛠️ Available Tools
1. Calculator Tool
Perform basic mathematical operations.
Example:
{
"name": "calculator",
"arguments": {
"operation": "add",
"a": 10,
"b": 5
}
}
2. File Operations Tool
Read, write, list, and get info about files.
Example:
{
"name": "file_operations",
"arguments": {
"operation": "read",
"path": "README.md"
}
}
3. System Info Tool
Get system information (platform, memory, CPU, etc.).
Example:
{
"name": "system_info",
"arguments": {
"detail": "full"
}
}
🔌 Google ADK Integration
The project includes a Google ADK integration module that demonstrates:
- Analytics Logging: Track tool usage
- Fulfillment Handlers: Process Google Assistant requests (placeholder)
- Usage Statistics: Get insights into tool usage
Enabling Google ADK
Set the environment variable:
export GOOGLE_ADK_ENABLED=true
Next Steps for Full Integration
-
Set up Google Actions Project
- Create a project in Google Cloud Console
- Enable Actions API
- Set up OAuth credentials
-
Implement Webhook Server
- Use Express.js or similar
- Handle fulfillment requests
- Connect to MCP server tools
-
Deploy
- Deploy to Google Cloud Functions or Cloud Run
- Configure webhook URL in Actions Console
📚 Best Practices Demonstrated
1. Type Safety
- Full TypeScript implementation
- Strict type checking enabled
- Interface definitions for all tools
2. Security
- Path validation (prevents directory traversal)
- Input sanitization
- Error message sanitization
3. Error Handling
- Comprehensive try-catch blocks
- Meaningful error messages
- Graceful degradation
4. Code Organization
- Separation of concerns
- Modular tool architecture
- Clear abstraction layers
5. Extensibility
- Easy to add new tools (extend
BaseTool) - Plugin-like architecture
- Configuration-driven behavior
🧪 Testing Your MCP Server
Using Claude Desktop
- Add to Claude Desktop configuration:
{
"mcpServers": {
"demo": {
"command": "node",
"args": ["/path/to/mcp-server-demo/dist/index.js"]
}
}
}
- Restart Claude Desktop
- The tools should be available in Claude
Using MCP Client
You can also test with an MCP client library or create a simple test script.
🎓 Learning Path
Beginner Tasks
- ✅ Understand the project structure
- ✅ Run the server and test tools
- ✅ Read through the code comments
- ✅ Modify calculator tool to add new operations
Intermediate Tasks
- Add a new tool (e.g.,
weathertool using an API) - Implement resource caching
- Add tool usage rate limiting
- Create unit tests for tools
Advanced Tasks
- Implement full Google ADK webhook server
- Add authentication/authorization
- Implement tool chaining
- Add streaming responses
- Create a remote MCP server (HTTP transport)
📖 Resources
🤝 Contributing
This is a learning project! Feel free to:
- Add more example tools
- Improve error handling
- Add tests
- Enhance documentation
📝 License
MIT
Happy Learning! 🚀
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。