
MCP Server
Manages query validation, database connection, and security for a system that transforms SQL databases into interactive dashboards using natural language queries.
README
MCP SQL Visualization
An AI-powered system that transforms SQL databases into interactive dashboards using natural language queries.
📌 Project Overview
MCP SQL Visualization removes the need for SQL expertise when analyzing data. Users can ask questions in plain English, and the system will generate SQL queries, execute them, and visualize the results automatically. The tool is designed for secure, read-only access to your database and leverages large language models (LLMs) for intelligent data interpretation.
✨ Features
-
Natural Language Interface:
Ask questions in plain English; the system generates and runs SQL queries for you. -
Automated Dashboards:
Instantly create visualizations and dashboards from your data. -
Secure Database Access:
All operations are read-only, with schema-level permissions and SQL injection protection. -
Multi-Database Support:
Compatible with MySQL and PostgreSQL. -
Export Options:
Download dashboards as HTML or PDF.
Components:
- Streamlit Frontend: User interface for chat and dashboard interaction.
- LLM Agent: Converts natural language to SQL and interprets results.
- MCP Server: Manages query validation, database connection, and security.
- Database: Your SQL data source (MySQL/PostgreSQL).
🚀 Installation
Prerequisites
- Python 3.9+
- MySQL or PostgreSQL database
- LLM API Key (Anthropic/OpenAI/Groq)
Steps
-
Clone the repository:
git clone https://github.com/sathwikabbaraju/MCP-SQL-Visualization.git cd mcp-sql-visualization
-
Set up a virtual environment:
python -m venv venv source venv/bin/activate # On Windows: venv\Scripts\activate
-
Install dependencies:
pip install -r requirements.txt
-
Configure environment variables: Create a
.env
file in the project root with the following content:DB_HOST=your_database_host DB_USER=readonly_user DB_PASSWORD=secure_password DB_NAME=your_database LLM_API_KEY=your_api_key MODEL_ID=claude-3-opus-20240229
-
Start the backend server:
uvicorn mcp_server:app --reload --port 8000
-
Launch the Streamlit UI:
streamlit run app.py
🖥️ Usage
-
Ask a Question:
Type a question in plain English in the chat interface.
Example:
What were our top 5 selling products last quarter? -
Generate a Dashboard:
Request a visualization or report.
Example:
Show monthly sales trends by region with key metrics. -
Export Results:
Download the generated dashboard as HTML or PDF for sharing.
Security
- Read-Only Database Access: Only SELECT queries are permitted.
- Schema Validation: Queries are checked against allowed tables and columns.
- SQL Injection Protection: All inputs are sanitized and parameterized.
Example Query Validation: def validate_query(query: str): if not query.strip().upper().startswith("SELECT"): raise Exception("Only SELECT queries are allowed.")
Contributing
- Fork the repository.
- Create a new branch:
git checkout -b feature/your-feature
- Commit your changes:
git commit -m 'Add your feature'
- Push to the branch:
git push origin feature/your-feature
- Open a Pull Request.
Acknowledgements
- Agno AI Agent Framework
- Streamlit
Happy Visualizing! 🚀
推荐服务器

Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。