MCP Server for LimeSurvey

MCP Server for LimeSurvey

Enables interaction with LimeSurvey API to create and manage surveys, questions, question groups, activate surveys, and export responses through standardized MCP endpoints.

Category
访问服务器

README

MCP Server for LimeSurvey

This MCP server enables interaction with the LimeSurvey API while adhering to the Model Context Protocol specifications. It exposes core LimeSurvey functionality through standardized MCP endpoints.

Features

  • 🚀 Survey creation
  • ❓ Question and answer management
  • 📋 Question group handling
  • ✅ Survey activation
  • 📊 Response exporting
  • 🔍 List available surveys

Prerequisites

  • Python 3.7+
  • Access to a LimeSurvey instance (version 3.X+)
  • LimeSurvey admin account

Installation

  1. Clone the repository:
git clone https://gitlab.com/mehdi_guiraud/mcp-limesurvey.git
cd mcp-limesurvey
  1. Configure environment variables:
cp .env.example .env
# Edit .env with your LimeSurvey credentials
nano .env
  1. Install dependencies:
python -m venv .venv
source .venv/bin/activate
pip install -r requirements.txt

Starting the Server

./start_server.sh

The server will be available at http://localhost:8080

Integration with Claude Desktop

Step 1: Add the MCP Server in Claude Desktop

  1. Open Claude Desktop
  2. Navigate to SettingsModel Context Protocol
  3. Click Add Custom Server
  4. Provide server details:
    • Server Name: LimeSurvey MCP
    • Base URL: http://localhost:8080/mcp
    • Specification URL: http://localhost:8080/spec

Step 2: Usage with Claude Desktop

Interact with LimeSurvey directly from Claude Desktop using MCP syntax:

Create a new survey

{
  "model": "limesurvey",
  "action": "create_survey",
  "parameters": {
    "survey_title": "Customer Feedback",
    "survey_language": "en"
  }
}

Add a question

{
  "model": "limesurvey",
  "action": "add_question",
  "parameters": {
    "survey_id": 123456,
    "group_id": 1,
    "question_text": "How satisfied are you with our service?",
    "question_type": "5",
    "question_options": {
      "subquestions": ["Very satisfied", "Satisfied", "Neutral", "Unsatisfied", "Very unsatisfied"]
    }
  }
}

Activate a survey

{
  "model": "limesurvey",
  "action": "activate_survey",
  "parameters": {
    "survey_id": 123456
  }
}

Export responses

{
  "model": "limesurvey",
  "action": "export_responses",
  "parameters": {
    "survey_id": 123456,
    "format": "json"
  }
}

Available MCP Endpoints

Action Required Parameters Description
create_survey survey_title, survey_language Create a new survey
add_question survey_id, group_id, question_text, question_type Add a question to a survey
add_group survey_id, group_title, group_description Add a question group
activate_survey survey_id Activate a survey
list_surveys None List all surveys
export_responses survey_id Export survey responses

Technical Specification

The server fully implements the MCP specification (2025-06-18). Access the complete specification at:

GET http://localhost:8080/spec

Security

  1. Authentication: Uses credentials stored in .env
  2. Validation: All requests are validated against the MCP schema
  3. Session Management: Automatically caches and recycles LimeSurvey sessions

Customization

To add new API methods:

  1. Add the endpoint in config/config.yaml
  2. Implement the method in app/main.py
  3. Update documentation in the get_mcp_spec function

Troubleshooting

  • Ensure RPC API is enabled in LimeSurvey (Configuration → Interfaces → Enable RPC API)
  • Verify correct credentials in .env
  • Check server logs for detailed error messages

License

This project is licensed under MIT. See LICENSE for details.

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选