MCP Server for SS&C Next Generation

MCP Server for SS&C Next Generation

An MCP-compatible server that connects AI agents to SS&C Next Generation, enabling automated execution of business processes via REST API.

Category
访问服务器

README

🧾 MCP Server for SS&C Next Generation

This project provides an MCP-compatible server that connects AI agents to SS&C Next Generation, enabling automated execution of business processes via the REST API.

Designed with flexibility in mind, this server allows you to:

Easily define and manage tools using a simple CSV configuration, without modifying source code.

Automatically submit items to Work Queues, a key component of Next Gen RPA orchestration.

Trigger automation flows in response to new queue items, creating a seamless bridge between AI-driven decisions and RPA actions.

Whether you're integrating conversational agents, scheduling systems, or custom applications, this server gives you a low-code interface to dynamically register actions and automate task submission with minimal overhead.

🚀 Installation & Setup

This section helps you set up and run an MCP-compatible server that interacts with SS&C Next Gen REST API.

🔧 Prerequisites

  • Python 3.10 or later
  • uv (recommended) package manager
  • MCP-compatible client (e.g., Claude Desktop)
  • SS&C Next Generation Environment(Japanese/English)

📥 Installation Steps

  1. Prepare Next Generation Service Account

Refer to the link below to create a service account.

Service Account

  1. Prepare Next Generation Work Queue

Work queue preparation is required when using dynamic tools. Please refer to the following link to create a work queue.

Work Queues

When combining with automated processing, it is necessary to check the following Automation Flow information and link it to the work queue

Automation Flow

  1. Prepare the project directory
git clone https://github.com/abe1bp/mcp-server-nextgen.git
cd mcp-server-nextgen

⚙️ Add MCP Server to claude_desktop_config.json

To connect Claude Desktop to your server, add:

{
  "mcpServers": {
    "mcp-server-nextgen": {
      "command": "uv",
      "args": [
        "--directory",
        "{folder path}",
        "run",
        "mcp-server-nextgen"
      ],
      "env": {
        "OAUTH_CLIENT_ID": "{your-client-id}",
        "OAUTH_CLIENT_SECRET": "{your-client-secret}",
        "OAUTH_TOKEN_URL": "https://{tenant-domain}/realms/{tenant-id}/protocol/openid-connect/token",
        "BASE_URL": "https://{tenant-domain}/regions/{region}/api/rpa/rest/v1"
      }
    }
  }
}

{folder path} is the folder prepared in Prepare the project directory.

Cconfigure the {your-client-id} and {your-client-secret} of the Service Account created in Step 1 of the Installation Steps.

For each URL parameters, please refer to the links provided below. Next Generation REST API Then restart Claude Desktop and select mcp-server-nextgen.


📌 Purpose

This Python-based MCP server leverages the Model Context Protocol (MCP) to:

  • Connect to Next Generation REST API
  • Authenticate via OAuth2 and expose secure MCP endpoints
  • Dynamically define tools to submit items to Next Generation Work Queues

📁 Key Components

🛠 Tool Types

🧩 Retrive Tools (predefined)

  • retrieve-automation-flow-list
  • retrieve-activity-log-list
  • retrieve-digital-worker-list
  • retrieve-session-list

🧩 Start automation flow Tool (predefined)

  • start-automation-flow

📄 Dynamic Tools (CSV-defined)

CSV Configuration for Dynamic Tool Loading

The workqueues.csv file defines tools that are dynamically loaded at server startup. Each row in the CSV represents a tool that can submit an item to a specific work queue.

Column Descriptions

Here is a clearer breakdown of the required columns:

Column Required Description
workqueueid Yes The unique identifier (UUID format) of the work queue where the item will be submitted.
name Yes A short, unique identifier for the tool. Used as its registered name.
description Yes A brief explanation of what the tool does. Displayed to clients and used to assist tool discovery.
inputSchema Yes A JSON Schema (as a string) defining the input structure required by the tool. Each input parameter must include a description to be usable by the client.
keyValue No A key or identifier that will be passed to the queue item (e.g., an Order ID). Can be a fixed value or a reference.
priority No An integer indicating the priority of the submitted item (e.g., 0 = lowest, 100 = highest).
status No Initial status assigned to the item when submitted (e.g., New, Pending).
tags No Comma-separated tags to help categorize or filter items in the queue.
Example
workqueueid,name,description,inputSchema,keyValue,priority,status,tags
aaaaaaaa-bbbb-cccc-dddd-eeeeeeeeeeee,submit-order,"Submit an order",{"type":"object","properties":{"OrderId":{"type":"string","description":"Order ID"}}},"Order001",50,"New","order,urgent"
Notes
  • Make sure inputSchema is a valid JSON object serialized as a string.
  • The description fields within inputSchema are essential for UI rendering and interaction.
  • You can omit optional columns if not needed, but headers must still be present.

This format allows you to configure and register dynamic tools for queue submissions without code changes.

📌 Dynamic tools are flexible:

  • You can define multiple tools per work queue.
  • Set proper name, description, inputSchema, and parameters to trigger item submission only when needed.

📤 Prompts

This is used when Client id and Client Secret are not set as environment variables.

Prompt Name Purpose
Set-NextGen-Login Set Client ID / Secret manually

🧪 Example: Tool Execution

✅ Call retrieve-digital-worker-list

Returns the list of digital workers and updates MCP clients via resources_changed.

✅ Call submit-order (CSV-defined tool)

Posts an item to a work queue:

{
  "keyValue": "Order001",
  "priority": 50,
  "status": "New",
  "tags": ["order", "urgent"],
  "data": "<base64-encoded XML>"
}

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选