
MCP Server for SS&C Next Generation
An MCP-compatible server that connects AI agents to SS&C Next Generation, enabling automated execution of business processes via REST API.
README
🧾 MCP Server for SS&C Next Generation
This project provides an MCP-compatible server that connects AI agents to SS&C Next Generation, enabling automated execution of business processes via the REST API.
Designed with flexibility in mind, this server allows you to:
Easily define and manage tools using a simple CSV configuration, without modifying source code.
Automatically submit items to Work Queues, a key component of Next Gen RPA orchestration.
Trigger automation flows in response to new queue items, creating a seamless bridge between AI-driven decisions and RPA actions.
Whether you're integrating conversational agents, scheduling systems, or custom applications, this server gives you a low-code interface to dynamically register actions and automate task submission with minimal overhead.
🚀 Installation & Setup
This section helps you set up and run an MCP-compatible server that interacts with SS&C Next Gen REST API.
🔧 Prerequisites
- Python 3.10 or later
uv
(recommended) package manager- MCP-compatible client (e.g., Claude Desktop)
- SS&C Next Generation Environment(Japanese/English)
📥 Installation Steps
- Prepare Next Generation Service Account
Refer to the link below to create a service account.
- Prepare Next Generation Work Queue
Work queue preparation is required when using dynamic tools. Please refer to the following link to create a work queue.
When combining with automated processing, it is necessary to check the following Automation Flow information and link it to the work queue
- Prepare the project directory
git clone https://github.com/abe1bp/mcp-server-nextgen.git
cd mcp-server-nextgen
⚙️ Add MCP Server to claude_desktop_config.json
To connect Claude Desktop to your server, add:
{
"mcpServers": {
"mcp-server-nextgen": {
"command": "uv",
"args": [
"--directory",
"{folder path}",
"run",
"mcp-server-nextgen"
],
"env": {
"OAUTH_CLIENT_ID": "{your-client-id}",
"OAUTH_CLIENT_SECRET": "{your-client-secret}",
"OAUTH_TOKEN_URL": "https://{tenant-domain}/realms/{tenant-id}/protocol/openid-connect/token",
"BASE_URL": "https://{tenant-domain}/regions/{region}/api/rpa/rest/v1"
}
}
}
}
{folder path} is the folder prepared in Prepare the project directory.
Cconfigure the {your-client-id} and {your-client-secret} of the Service Account created in Step 1 of the Installation Steps.
For each URL parameters, please refer to the links provided below.
Next Generation REST API
Then restart Claude Desktop and select mcp-server-nextgen
.
📌 Purpose
This Python-based MCP server leverages the Model Context Protocol (MCP) to:
- Connect to Next Generation REST API
- Authenticate via OAuth2 and expose secure MCP endpoints
- Dynamically define tools to submit items to Next Generation Work Queues
📁 Key Components
🛠 Tool Types
🧩 Retrive Tools (predefined)
retrieve-automation-flow-list
retrieve-activity-log-list
retrieve-digital-worker-list
retrieve-session-list
🧩 Start automation flow Tool (predefined)
start-automation-flow
📄 Dynamic Tools (CSV-defined)
CSV Configuration for Dynamic Tool Loading
The workqueues.csv
file defines tools that are dynamically loaded at server startup. Each row in the CSV represents a tool that can submit an item to a specific work queue.
Column Descriptions
Here is a clearer breakdown of the required columns:
Column | Required | Description |
---|---|---|
workqueueid |
Yes | The unique identifier (UUID format) of the work queue where the item will be submitted. |
name |
Yes | A short, unique identifier for the tool. Used as its registered name. |
description |
Yes | A brief explanation of what the tool does. Displayed to clients and used to assist tool discovery. |
inputSchema |
Yes | A JSON Schema (as a string) defining the input structure required by the tool. Each input parameter must include a description to be usable by the client. |
keyValue |
No | A key or identifier that will be passed to the queue item (e.g., an Order ID). Can be a fixed value or a reference. |
priority |
No | An integer indicating the priority of the submitted item (e.g., 0 = lowest, 100 = highest). |
status |
No | Initial status assigned to the item when submitted (e.g., New , Pending ). |
tags |
No | Comma-separated tags to help categorize or filter items in the queue. |
Example
workqueueid,name,description,inputSchema,keyValue,priority,status,tags
aaaaaaaa-bbbb-cccc-dddd-eeeeeeeeeeee,submit-order,"Submit an order",{"type":"object","properties":{"OrderId":{"type":"string","description":"Order ID"}}},"Order001",50,"New","order,urgent"
Notes
- Make sure
inputSchema
is a valid JSON object serialized as a string. - The
description
fields withininputSchema
are essential for UI rendering and interaction. - You can omit optional columns if not needed, but headers must still be present.
This format allows you to configure and register dynamic tools for queue submissions without code changes.
📌 Dynamic tools are flexible:
- You can define multiple tools per work queue.
- Set proper
name
,description
,inputSchema
, and parameters to trigger item submission only when needed.
📤 Prompts
This is used when Client id and Client Secret are not set as environment variables.
Prompt Name | Purpose |
---|---|
Set-NextGen-Login | Set Client ID / Secret manually |
🧪 Example: Tool Execution
✅ Call retrieve-digital-worker-list
Returns the list of digital workers and updates MCP clients via resources_changed
.
✅ Call submit-order
(CSV-defined tool)
Posts an item to a work queue:
{
"keyValue": "Order001",
"priority": 50,
"status": "New",
"tags": ["order", "urgent"],
"data": "<base64-encoded XML>"
}
推荐服务器

Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。