MCP Server Implementation Guide
A guide and implementation for creating your own MCP (Model Control Protocol) server for Cursor integration
dharakpatel
README
MCP Server Implementation Guide
What is MCP?
MCP (Model Control Protocol) is a protocol that enables communication between Cursor IDE and AI language models like Claude. It allows you to create custom server implementations that can handle various AI-powered features in Cursor.
How It Works
The MCP server acts as a bridge between Cursor IDE and the AI model (like Claude). Here's the basic flow:
- Cursor sends requests to the MCP server
- The MCP server processes these requests and forwards them to the AI model
- The AI model generates responses
- The MCP server formats and sends these responses back to Cursor
Features
- Custom AI model integration
- Request/Response handling
- Websocket communication
- Configuration management
- Error handling
- Rate limiting
- Authentication
Setting Up Your Own MCP Server
Prerequisites
- Python 3.8+
- FastAPI
- Anthropic API key (for Claude integration)
- Cursor IDE
Installation
git clone https://github.com/dharakpatel/mcp_server.git
cd mcp_server
pip install -r requirements.txt
Configuration
Create a config.json
file in your project root:
{
"server": {
"host": "localhost",
"port": 8000,
"debug": false
},
"anthropic": {
"api_key": "your-api-key-here",
"model": "claude-3-sonnet-20240229"
},
"cursor": {
"allowed_origins": ["http://localhost:3000"],
"max_tokens": 4096,
"timeout": 30
},
"security": {
"enable_auth": true,
"auth_token": "your-secret-token",
"rate_limit": {
"requests_per_minute": 60
}
}
}
Integrating with Cursor
- Open Cursor IDE
- Go to Settings
- Navigate to AI Settings
- Set Custom MCP Server URL to
http://localhost:8000
(or your server URL) - Add your authentication token if enabled
API Endpoints
Main Endpoints
/v1/chat/completions
- Main chat completion endpoint/v1/health
- Server health check/v1/models
- Available models information
WebSocket Endpoint
/ws
- WebSocket connection for real-time communication
Error Handling
The server implements comprehensive error handling:
- Invalid requests
- Authentication errors
- Rate limiting
- Timeout handling
- Model errors
Best Practices
- Always use environment variables for sensitive data
- Implement proper logging
- Use rate limiting to prevent abuse
- Implement proper error handling
- Keep the configuration file secure
- Regular monitoring and maintenance
Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
License
MIT License
Support
For issues and questions, please open an issue in the GitHub repository.
推荐服务器
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
MCP Package Docs Server
促进大型语言模型高效访问和获取 Go、Python 和 NPM 包的结构化文档,通过多语言支持和性能优化来增强软件开发。
Claude Code MCP
一个实现了 Claude Code 作为模型上下文协议(Model Context Protocol, MCP)服务器的方案,它可以通过标准化的 MCP 接口来使用 Claude 的软件工程能力(代码生成、编辑、审查和文件操作)。
@kazuph/mcp-taskmanager
用于任务管理的模型上下文协议服务器。它允许 Claude Desktop(或任何 MCP 客户端)在基于队列的系统中管理和执行任务。
mermaid-mcp-server
一个模型上下文协议 (MCP) 服务器,用于将 Mermaid 图表转换为 PNG 图像。
Jira-Context-MCP
MCP 服务器向 AI 编码助手(如 Cursor)提供 Jira 工单信息。

Linear MCP Server
一个模型上下文协议(Model Context Protocol)服务器,它与 Linear 的问题跟踪系统集成,允许大型语言模型(LLM)通过自然语言交互来创建、更新、搜索和评论 Linear 问题。

Sequential Thinking MCP Server
这个服务器通过将复杂问题分解为顺序步骤来促进结构化的问题解决,支持修订,并通过完整的 MCP 集成来实现多条解决方案路径。
Curri MCP Server
通过管理文本笔记、提供笔记创建工具以及使用结构化提示生成摘要,从而实现与 Curri API 的交互。